4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Curcumin could reduce the monomer of TTR with Tyr114Cys mutation via autophagy in cell model of familial amyloid polyneuropathy

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transthyretin (TTR) familial amyloid polyneuropathy (FAP) is an autosomal dominant inherited neurodegenerative disorder caused by various mutations in the transthyretin gene. We aimed to identify the mechanisms underlying TTR FAP with Tyr114Cys (Y114C) mutation. Our study showed that TTR Y114C mutation led to an increase in monomeric TTR and impaired autophagy. Treatment with curcumin resulted in a significant decrease of monomeric TTR by recovering autophagy. Our research suggests that impairment of autophagy might be involved in the pathogenesis of TTR FAP with Y114C mutation, and curcumin might be a potential therapeutic approach for TTR FAP.

          Related collections

          Most cited references 13

          • Record: found
          • Abstract: found
          • Article: not found

          An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured.

          Transthyretin (TTR) is a soluble human plasma protein that can be converted into amyloid by acid-mediated dissociation of the homotetramer into monomers. The pH required for disassembly also results in tertiary structural changes within the monomeric subunits. To understand whether these tertiary structural changes are required for amyloidogenicity, we created the Phe87Met/Leu110Met TTR variant (M-TTR) that is monomeric according to analytical ultracentrifugation and gel filtration analyses and nonamyloidogenic at neutral pH. Results from far- and near-UV circular dichroism spectroscopy, one-dimensional proton NMR spectroscopy, and X-ray crystallography, as well as the ability of M-TTR to form a complex with retinol binding protein, indicate that M-TTR forms a tertiary structure at pH 7 that is very similar if not identical to that found within the tetramer. Reducing the pH results in tertiary structural changes within the M-TTR monomer, rendering it amyloidogenic, demonstrating the requirement for partial denaturation. M-TTR exhibits stability toward acid and urea denaturation that is nearly identical to that characterizing wild-type (WT) TTR at low concentrations (0.01-0.1 mg/mL), where monomeric WT TTR is significantly populated at intermediate urea concentrations prior to the tertiary structural transition. However, the kinetics of denaturation and fibril formation are much faster for M-TTR than for tetrameric WT TTR, particularly at near-physiological concentrations, because of the barrier associated with the tetramer to folded monomer preequilibrium. These results demonstrate that the tetramer to folded monomer transition is insufficient for fibril formation; further tertiary structural changes within the monomer are required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endoplasmic reticulum stress associated with extracellular aggregates. Evidence from transthyretin deposition in familial amyloid polyneuropathy.

            The hallmark of familial amyloid polyneuropathy (FAP) is the presence of extracellular deposits of transthyretin (TTR) aggregates and amyloid fibers in several tissues, particularly in the peripheral nervous system. The molecular pathways to neurodegeneration in FAP still remain elusive; activation of nuclear factor kappaB, pro-inflammatory cytokines, oxidative stress, and pro-apoptotic caspase-3 has been demonstrated "in vivo" in clinical samples and in cell culture systems. In this study, we investigated the involvement of endoplasmic reticulum (ER) stress response in FAP by showing activation of the classical unfolded protein response pathways in tissues not specialized in TTR synthesis but presenting extracellular TTR aggregate and fibril deposition. We also proved cytotoxicity by Ca2+ efflux from the ER in cell cultures incubated with TTR oligomers. Taken together, these studies evidence ER stress associated with a extracellular signal in a misfolding disorder.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding and stabilization of transthyretin by curcumin.

              Biophysical evidences suggest that transthyretin (TTR) tetramer dissociation to the monomeric intermediate and subsequent polymerization leads to amyloid fibril formation, which is implicated in the pathogenesis of familial amyloid polyneuropathy (FAP) and senile systemic amyloidosis (SSA). Hence, inhibition of fibril formation is considered a potential therapeutic strategy. Here in we demonstrate that curcumin, a phenolic constituent of curry spice turmeric, binds to the active site of TTR through fluorescence quenching and ANS displacement studies. Binding of curcumin appears to inhibit the denaturant induced tertiary and quaternary structural changes in TTR as monitored by intrinsic emission fluorescence and glutaraldehyde cross-linking studies. However, curcumin did not bind to TTR at acidic pH. Protonation/ isomerization of the side chain oxygen atoms of curcumin at low pH might hamper the binding. These results suggest that curcumin binds to and stabilizes TTR thereby highlight the importance of the side chain conformations of the ligand in binding to TTR.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                31 October 2014
                : 8
                : 2121-2128
                Affiliations
                [1 ]Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
                [2 ]Key Laboratory of Stem Cell Biology and Laboratory of Neurodegenerative Diseases, Institute of Health Science, Shanghai Institutes of Biological Sciences, Chinese Academy of Science, and Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Sheng-Di Chen, Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, People’s Republic of China, Tel +86 21 6445 7249, Fax +86 21 6445 7249, Email chen_sd@ 123456medmail.com.cn
                [*]

                These authors contributed equally to this work

                Article
                dddt-8-2121
                10.2147/DDDT.S70866
                4222630
                25382970
                © 2014 Li et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article