2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stress Changes the Resting-State Cortical Flow of Information from Distributed to Frontally Directed Patterns

      research-article
      Biology
      MDPI
      cortical flow of information, directed functional connectivity, stress, anxiety, transfer entropy

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Despite converging evidence on the involvement of large-scale distributed brain networks in response to stress, the effect of stress on the components of these networks is less clear. Although some studies identify higher regional activities in response to stress, others observe an opposite effect in the similar regions. Studies based on synchronized activities and coactivation of these components also yield similar differing results. However, these differences are not necessarily contradictory once we observe the effect of stress on these functional networks in terms of the change in information processing capacity of their components. In the present study, we investigate the utility of such a shift in the analysis of the effect of stress on distributed cortical regions through quantification of the flow of information among them. For this purpose, we use the self-assessed responses of 216 individuals to stress-related questionnaires and systematically select 20 of them whose responses showed significantly higher and lower susceptibility to stress. We then use these 20 individuals’ resting-state multi-channel electroencephalography (EEG) recordings (both Eyes-Closed (EC) and Eyes-Open (EO) settings) and compute the distributed flow of information among their cortical regions using transfer entropy (TE). The contribution of the present study is three-fold. First, it identifies that the stress-susceptibility is characterized by the change in flow of information in fronto-parietal brain network. Second, it shows that these regions are distributed bi-hemispherically and are sufficient to significantly differentiate between the individuals with high versus low stress-susceptibility. Third, it verifies that the high stress-susceptibility is markedly associated with a higher parietal-to-frontal flow of information. These results provide further evidence for the viewpoint in which the brain’s modulation of information is not necessarily accompanied by the change in its regional activity. They further construe the effect of stress in terms of a disturbance that disrupts the flow of information among the brain’s distributed cortical regions. These observations, in turn, suggest that some of the differences in the previous findings perhaps reflect different aspects of impaired distributed brain information processing in response to stress. From a broader perspective, these results posit the use of TE as a potential diagnostic/prognostic tool in identification of the effect of stress on distributed brain networks that are involved in stress-response.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          The brain basis of emotion: a meta-analytic review.

          Researchers have wondered how the brain creates emotions since the early days of psychological science. With a surge of studies in affective neuroscience in recent decades, scientists are poised to answer this question. In this target article, we present a meta-analytic summary of the neuroimaging literature on human emotion. We compare the locationist approach (i.e., the hypothesis that discrete emotion categories consistently and specifically correspond to distinct brain regions) with the psychological constructionist approach (i.e., the hypothesis that discrete emotion categories are constructed of more general brain networks not specific to those categories) to better understand the brain basis of emotion. We review both locationist and psychological constructionist hypotheses of brain-emotion correspondence and report meta-analytic findings bearing on these hypotheses. Overall, we found little evidence that discrete emotion categories can be consistently and specifically localized to distinct brain regions. Instead, we found evidence that is consistent with a psychological constructionist approach to the mind: A set of interacting brain regions commonly involved in basic psychological operations of both an emotional and non-emotional nature are active during emotion experience and perception across a range of discrete emotion categories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Functional and effective connectivity: a review.

            Over the past 20 years, neuroimaging has become a predominant technique in systems neuroscience. One might envisage that over the next 20 years the neuroimaging of distributed processing and connectivity will play a major role in disclosing the brain's functional architecture and operational principles. The inception of this journal has been foreshadowed by an ever-increasing number of publications on functional connectivity, causal modeling, connectomics, and multivariate analyses of distributed patterns of brain responses. I accepted the invitation to write this review with great pleasure and hope to celebrate and critique the achievements to date, while addressing the challenges ahead.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress, memory and the amygdala.

              Emotionally significant experiences tend to be well remembered, and the amygdala has a pivotal role in this process. But the efficient encoding of emotional memories can become maladaptive - severe stress often turns them into a source of chronic anxiety. Here, we review studies that have identified neural correlates of stress-induced modulation of amygdala structure and function - from cellular mechanisms to their behavioural consequences. The unique features of stress-induced plasticity in the amygdala, in association with changes in other brain regions, could have long-term consequences for cognitive performance and pathological anxiety exhibited in people with affective disorders.
                Bookmark

                Author and article information

                Journal
                Biology (Basel)
                Biology (Basel)
                biology
                Biology
                MDPI
                2079-7737
                18 August 2020
                August 2020
                : 9
                : 8
                : 236
                Affiliations
                The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan; soheil@ 123456atr.jp
                Author information
                https://orcid.org/0000-0003-0854-0354
                Article
                biology-09-00236
                10.3390/biology9080236
                7464349
                32824879
                86833f29-69e5-42b5-bc6f-54cd13cb87dc
                © 2020 by the author.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 July 2020
                : 17 August 2020
                Categories
                Article

                cortical flow of information,directed functional connectivity,stress,anxiety,transfer entropy

                Comments

                Comment on this article