11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered interhemispheric functional connectivity in remitted bipolar disorder: A Resting State fMRI Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abnormalities in structural and functional brain connectivity have been increasingly reported in patients with bipolar disorder (BD). However, alterations of remitted BD (RBD) in functional connectivity between the cerebral hemispheres are still not well understood. This study was designed to analyze the pattern of the interhemispheric functional connectivity of the whole brain in patients with remitted BD during resting state. Twenty patients with RBD and 38 healthy controls (HC) underwent the resting-state functional magnetic resonance imaging. The functional connectivity between any pair of symmetrical interhemispheric voxels (i.e., functional homotopy) was measured by voxel-mirrored homotopic connectivity (VMHC). The patients with RBD showed lower VMHC than HC in the middle frontal gyrus and precentral gyrus. No regions of increased VMHC were detected in the RBD patients. There were no significant correlations between the VMHC values in these regions and the clinical variables. These findings suggest substantial impairment of interhemispheric coordination in RBD and they may represent trait, rather than state, neurobiological feature of brain function in BD.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data.

          Several recent reports in large, independent samples have demonstrated the influence of motion artifact on resting-state functional connectivity MRI (rsfc-MRI). Standard rsfc-MRI preprocessing typically includes regression of confounding signals and band-pass filtering. However, substantial heterogeneity exists in how these techniques are implemented across studies, and no prior study has examined the effect of differing approaches for the control of motion-induced artifacts. To better understand how in-scanner head motion affects rsfc-MRI data, we describe the spatial, temporal, and spectral characteristics of motion artifacts in a sample of 348 adolescents. Analyses utilize a novel approach for describing head motion on a voxelwise basis. Next, we systematically evaluate the efficacy of a range of confound regression and filtering techniques for the control of motion-induced artifacts. Results reveal that the effectiveness of preprocessing procedures on the control of motion is heterogeneous, and that improved preprocessing provides a substantial benefit beyond typical procedures. These results demonstrate that the effect of motion on rsfc-MRI can be substantially attenuated through improved preprocessing procedures, but not completely removed. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Growing together and growing apart: regional and sex differences in the lifespan developmental trajectories of functional homotopy.

            Functional homotopy, the high degree of synchrony in spontaneous activity between geometrically corresponding interhemispheric (i.e., homotopic) regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, despite its prominence, the lifespan development of the homotopic resting-state functional connectivity (RSFC) of the human brain is rarely directly examined in functional magnetic resonance imaging studies. Here, we systematically investigated age-related changes in homotopic RSFC in 214 healthy individuals ranging in age from 7 to 85 years. We observed marked age-related changes in homotopic RSFC with regionally specific developmental trajectories of varying levels of complexity. Sensorimotor regions tended to show increasing homotopic RSFC, whereas higher-order processing regions showed decreasing connectivity (i.e., increasing segregation) with age. More complex maturational curves were also detected, with regions such as the insula and lingual gyrus exhibiting quadratic trajectories and the superior frontal gyrus and putamen exhibiting cubic trajectories. Sex-related differences in the developmental trajectory of functional homotopy were detected within dorsolateral prefrontal cortex (Brodmann areas 9 and 46) and amygdala. Evidence of robust developmental effects in homotopic RSFC across the lifespan should serve to motivate studies of the physiological mechanisms underlying functional homotopy in neurodegenerative and psychiatric disorders.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: a systems neuroscience perspective.

              Resting-state functional magnetic resonance imaging (RFMRI) enables researchers to monitor fluctuations in the spontaneous brain activities of thousands of regions in the human brain simultaneously, representing a popular tool for macro-scale functional connectomics to characterize normal brain function, mind-brain associations, and the various disorders. However, the test-retest reliability of RFMRI remains largely unknown. We review previously published papers on the test-retest reliability of voxel-wise metrics and conduct a meta-summary reliability analysis of seven common brain networks. This analysis revealed that the heteromodal associative (default, control, and attention) networks were mostly reliable across the seven networks. Regarding examined metrics, independent component analysis with dual regression, local functional homogeneity and functional homotopic connectivity were the three mostly reliable RFMRI metrics. These observations can guide the use of reliable metrics and further improvement of test-retest reliability for other metics in functional connectomics. We discuss the main issues with low reliability related to sub-optimal design and the choice of data processing options. Future research should use large-sample test-retest data to rectify both the within-subject and between-subject variability of RFMRI measurements and accelerate the application of functional connectomics.
                Bookmark

                Author and article information

                Contributors
                johneil@vip.sina.com
                cjr.huangli@vip.163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                5 July 2017
                5 July 2017
                2017
                : 7
                : 4698
                Affiliations
                [1 ]ISNI 0000 0004 1760 3828, GRID grid.412601.0, Medical Imaging Center, , First Affiliated Hospital of Jinan University, ; Guangzhou, 510630 China
                [2 ]GRID grid.417234.7, Department of Radiology, , Gansu Provincial Hospital, ; Gansu, 730000 China
                [3 ]ISNI 0000 0004 1760 3828, GRID grid.412601.0, Clinical Experimental Center, , First Affiliated Hospital of Jinan University, ; Guangzhou, 510630 China
                [4 ]ISNI 0000 0004 1760 3828, GRID grid.412601.0, Department of Psychiatry, , First Affiliated Hospital of Jinan University, ; Guangzhou, 510630 China
                [5 ]General Electric Healthcare, Shanghai, 200000 China
                Article
                4937
                10.1038/s41598-017-04937-6
                5498592
                28680123
                86894ec8-e42b-4f84-a613-17970535a1e3
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 June 2016
                : 23 May 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article