105
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Private Selective Sweeps Identified from Next-Generation Pool-Sequencing Reveal Convergent Pathways under Selection in Two Inbred Schistosoma mansoni Strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The trematode flatworms of the genus Schistosoma, the causative agents of schistosomiasis, are among the most prevalent parasites in humans, affecting more than 200 million people worldwide. In this study, we focused on two well-characterized strains of S. mansoni, to explore signatures of selection. Both strains are highly inbred and exhibit differences in life history traits, in particular in their compatibility with the intermediate host Biomphalaria glabrata.

          Methodology/Principal Findings

          We performed high throughput sequencing of DNA from pools of individuals of each strain using Illumina technology and identified single nucleotide polymorphisms (SNP) and copy number variations (CNV). In total, 708,898 SNPs were identified and roughly 2,000 CNVs. The SNPs revealed low nucleotide diversity (π = 2×10 −4) within each strain and a high differentiation level (Fst = 0.73) between them. Based on a recently developed in-silico approach, we further detected 12 and 19 private ( i.e. specific non-overlapping) selective sweeps among the 121 and 151 sweeps found in total for each strain.

          Conclusions/Significance

          Functional annotation of transcripts lying in the private selective sweeps revealed specific selection for functions related to parasitic interaction ( e.g. cell-cell adhesion or redox reactions). Despite high differentiation between strains, we identified evolutionary convergence of genes related to proteolysis, known as a key virulence factor and a potential target of drug and vaccine development. Our data show that pool-sequencing can be used for the detection of selective sweeps in parasite populations and enables one to identify biological functions under selection.

          Author Summary

          Adaptation of parasites to their environment is governed by the principle of selection. Favourable mutations are fixed in populations while deleterious mutations are progressively eliminated. Here, we aimed to find signatures of selection in two strains of Schistosoma mansoni, the causative agent of intestinal schistosomiasis. The strains differ in specific characters, in particular in their capacity to infect intermediate host snails. The reason for this is unknown and understanding it could help control the spreading of the disease. Finding footprints of adaptation to different snail hosts would lead to the discovery of genes that are particularly important for the interaction. Since a single parasite does not contain sufficient DNA to be sequenced, we pooled several individuals, sequenced them as a whole analysed them. In the regions under selection we found genes that are indeed linked to the parasitic lifestyle. We also discovered that natural selection led to diversification of genes that are related to proteolysis, the process by which the parasite destroys host tissue. The related proteins are considered good targets for drug development and vaccination. Our results suggest that in natural populations many variants of these genes exist and that they evolve rapidly, which might hamper therapeutic approaches.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Rates of spontaneous mutation.

          Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global status of schistosomiasis and its control.

            Schistosomiasis is being successfully controlled in many countries but remains a major public health problem, with an estimated 200 million people infected, mostly in Africa. Few countries in this region have undertaken successful and sustainable control programmes. The construction of water schemes to meet the power and agricultural requirements for development have lead to increasing transmission, especially of Schistosoma mansoni. Increasing population and movement have contributed to increased transmission and introduction of schistosomiasis to new areas. Most endemic countries are among the least developed whose health systems face difficulties to provide basic care at the primary health level. Constraints to control include, the lack of political commitment and infrastructure for public health interventions. Another constraint is that available anti-schistosomal drugs are expensive and the cost of individual treatment is a high proportion of the per capita drug budgets. There is need for increased support for schistosomiasis control in the most severely affected countries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              CNV-seq, a new method to detect copy number variation using high-throughput sequencing

              Background DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Results Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Conclusion Simulation of various sequencing methods with coverage between 0.1× to 8× show overall specificity between 91.7 – 99.9%, and sensitivity between 72.2 – 96.5%. We also show the results for assessment of CNV between two individual human genomes.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                December 2013
                12 December 2013
                : 7
                : 12
                : e2591
                Affiliations
                [1 ]Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
                [2 ]CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
                [3 ]INRA, UMR CBGP (INRA – IRD – Cirad – Montpellier SupAgro), Montferrier-sur-Lez, France
                [4 ]MGX Montpellier GenomiX, Montpellier, France
                [5 ]CNRS, Institut de Génétique Humaine, UPR 1142, Montpellier, France
                University of Melbourne, Australia
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CG. Performed the experiments: JAJC JBo HP. Analyzed the data: JAJC ET MG JBu CG. Contributed reagents/materials/analysis tools: DR AR HP. Wrote the paper: JAJC ET CG JBu. Initiated and supported the project: GMi. Discussed the results: GMo HM.

                Article
                PNTD-D-13-00918
                10.1371/journal.pntd.0002591
                3861164
                24349597
                8694df4e-9584-45a8-b75c-cddcc5e67de8
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 16 June 2013
                : 30 October 2013
                Page count
                Pages: 12
                Funding
                This work received funding from the French National Agency for Research (ANR), project ANR-2010-BLAN-1720-01 (EPIGEVOL) ( http://www.agence-nationale-recherche.fr/programmes-de-recherche/recherches-exploratoires-et-emergentes/blanc-generalite-et-contacts/blanc-presentation-synthetique-du-projet/?tx_lwmsuivibilan_pi2[CODE] = ANR-10-BLAN-1720). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article