8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An integrative model for alternative polyadenylation, IntMAP, delineates mTOR-modulated endoplasmic reticulum stress response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3′-untranslated regions (UTRs) can vary through the use of alternative polyadenylation sites during pre-mRNA processing. Multiple publically available pipelines combining high profiling technologies and bioinformatics tools have been developed to catalog changes in 3′-UTR lengths. In our recent RNA-seq experiments using cells with hyper-activated mammalian target of rapamycin (mTOR), we found that cellular mTOR activation leads to transcriptome-wide alternative polyadenylation (APA), resulting in the activation of multiple cellular pathways. Here, we developed a novel bioinformatics algorithm, IntMAP, which integrates RNA-Seq and PolyA Site (PAS)-Seq data for a comprehensive characterization of APA events. By applying IntMAP to the datasets from cells with hyper-activated mTOR, we identified novel APA events that could otherwise not be identified by either profiling method alone. Several transcription factors including Cebpg (CCAAT/enhancer binding protein gamma) were among the newly discovered APA transcripts, indicating that diverse transcriptional networks may be regulated by mTOR-coordinated APA. The prevention of APA in Cebpg using the CRISPR/cas9-mediated genome editing tool showed that mTOR-driven 3′-UTR shortening in Cebpg is critical in protecting cells from endoplasmic reticulum (ER) stress. Taken together, we present IntMAP as a new bioinformatics algorithm for APA analysis by which we expand our understanding of the physiological role of mTOR-coordinated APA events to ER stress response. IntMAP toolbox is available at http://compbio.cs.umn.edu/IntMAP/.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease.

          The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of mTORC1 and its impact on gene expression at a glance.

            The mechanistic (or mammalian) target of rapamycin (mTOR) is a kinase that regulates key cellular functions linked to the promotion of cell growth and metabolism. This kinase, which is part of two protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), has a fundamental role in coordinating anabolic and catabolic processes in response to growth factors and nutrients. Of the two mTOR complexes, mTORC1 is by far the best characterized. When active, mTORC1 triggers cell growth and proliferation by promoting protein synthesis, lipid biogenesis, and metabolism, and by reducing autophagy. The fact that mTORC1 deregulation is associated with several human diseases, such as type 2 diabetes, cancer, obesity and neurodegeneration, highlights its importance in the maintenance of cellular homeostasis. Over the last years, several groups observed that mTORC1 inhibition, in addition to reducing protein synthesis, deeply affects gene transcription. Here, we review the connections between mTORC1 and gene transcription by focusing on its impact in regulating the activation of specific transcription factors including including STAT3, SREBPs, PPARγ, PPARα, HIF1α, YY1–PGC1α and TFEB. We also discuss the importance of these transcription factors in mediating the effects of mTORC1 on various cellular processes in physiological and pathological contexts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formation, Regulation and Evolution of Caenorhabditis elegans 3′UTRs

              Posttranscriptional gene regulation frequently occurs through elements in mRNA 3′ untranslated regions (UTRs)1,2. Although crucial roles for 3′UTR-mediated gene regulation have been found in Caenorhabditis elegans 3,4,5, most C. elegans genes have lacked annotated 3′UTRs6,7. Here we describe a high-throughput method to reliably identify polyadenylated RNA termini, and we apply this method, called poly(A)-position profiling by sequencing (3P-Seq), to determine C. elegans 3′UTRs. Compared to standard methods also recently applied to C. elegans UTRs8, 3P-Seq identified 8,581 additional UTRs while excluding thousands of shorter UTR isoforms that do not appear to be authentic. Analysis of this expanded and corrected dataset suggested that the high A/U content of C. elegans 3′UTRs facilitated genome compaction, since the elements specifying cleavage and polyadenylation, which are A/U-rich, can more readily emerge in A/U rich regions. Indeed, 30% of the protein-coding genes have mRNAs with alternative, partially overlapping end regions that generate another 10,498 cleavage and polyadenylation sites that had gone largely unnoticed and represent potential evolutionary intermediates of progressive UTR shortening. Moreover, a third of the convergently transcribed genes utilize palindromic arrangements of bidirectional elements to specify UTRs with convergent overlap, which also contributes to genome compaction by eliminating regions between genes. Although nematode 3′UTRs have median length only one-sixth that of mammalian 3′UTRs, they have twice the density of conserved microRNA sites, in part because additional types of seed-complementary sites are preferentially conserved. These findings reveal the influence of cleavage and polyadenylation on the evolution of genome architecture and provide resources for studying posttranscriptional gene regulation.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                06 July 2018
                04 May 2018
                04 May 2018
                : 46
                : 12
                : 5996-6008
                Affiliations
                [1 ]Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
                [2 ]Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
                [3 ]Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
                [4 ]Department of Microbiology and Molecular Genetics, University of California School of Medicine, Irvine, CA 92697, USA
                Author notes
                To whom correspondence should be addressed. Tel: +1 612 626 2420; Fax: +1 612 625 2163; Email: jyong@ 123456umn.edu . Correspondence may also be addressed to Rui Kuang. Tel: +1 612 624 7820; Fax: +1 612 625 0572; Email: kuan0009@ 123456umn.edu

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

                Article
                gky340
                10.1093/nar/gky340
                6158760
                29733382
                8695e108-36e9-49d0-ae00-277e23499ce7
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 20 April 2018
                : 11 April 2018
                : 20 September 2017
                Page count
                Pages: 13
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: 1R01GM113952-01A1
                Funded by: Congressionally Directed Medical Research Programs 10.13039/100000090
                Award ID: W81XWH-16-1-0135
                Categories
                Gene regulation, Chromatin and Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article