25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Pial Microvascular Responses to Transient Bilateral Common Carotid Artery Occlusion: Effects of Hypertonic Glycerol

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: The aim of the study was to assess the rat pial microvessel alterations due to transient bilateral common carotid artery occlusion (BCCAO) and to investigate the mechanism of 10% hypertonic glycerol neuroprotection. Our suggestion was that 10% glycerol solution infusion could dilate pial arterioles through nitric oxide release and/or stimulation of ATP-sensitive potassium (K<sub>ATP</sub>) channels. Therefore, we studied the effects of hypertonic glycerol after inhibition of nitric oxide synthase, with N<sup>G</sup>-nitro- L-arginine-methyl ester or N<sup>G</sup>-nitro- L-arginine, or K<sub>ATP</sub> channels with glibenclamide. Methods: Pial microcirculation of male Wistar rats was visualized by a fluorescent microscopy technique through an open cranial window, using fluorescein isothiocyanate bound to dextran (molecular weight 70 kDa). BCCAO was induced for 30 min and reperfusion lasted 60 min. The arterioles were classified according to the Strahler ordering scheme. Permeability increase was quantified by normalized grey levels (NGL). Leucocytes were stained with rhodamine 6G. Perfused capillary length and capillary red blood cell (RBC) velocity were measured by computer-assisted methods. Results: The arterioles were assigned 5 orders of branchings, from order 1 (diameter 16.0 ± 2.5 µm) to order 5 (62.0 ± 5.0 µm). BCCAO caused inhomogenous changes in diameter of arterioles and leakage of fluorescent dextran, that was further enhanced by reperfusion (0.45 ± 0.05 NGL, p < 0.01). Adhesion of leukocytes to venules was marked and capillary perfusion was reduced by 39.2 ± 6.0% of baseline as well as capillary RBC velocity. 10% glycerol solution caused an increase in diameter of all arterioles within 25 ± 2 min of administration (by 20 ± 5% in order 4, 25 ± 4% in order 3 and 18 ± 3% in order 2; p < 0.01). Leakage (0.19 ± 0.03 NGL, p < 0.01), leukocyte adhesion (2.0 ± 1.0/100 µm of venular length, p < 0.01) and capillary occlusion (reduction by 13.0 ± 5.5% of baseline) were prevented compared with controls. Capillary RBC velocity increased compared with controls. N<sup>G</sup>-nitro- L-arginine-methyl ester or N<sup>G</sup>-nitro- L-arginine infused prior to glycerol caused vasoconstriction and reduced the protective effects of hypertonic glycerol on permeability increase. The number of adherent leukocytes and perfused capillary length decreased, while capillary RBC velocity was higher than baseline. Glibenclamide prior to 10% glycerol solution blunted glycerol-induced vasodilatation, but did not affect protection by hypertonic glycerol on blood-brain barrier disruption, leukocyte adhesion and capillary perfusion, preserving high capillary RBC velocity. Papaverine (20 mg/kg body weight) induced an increase in arteriolar diameter, enhancing interstitial edema; adhesion of leukocytes was marked as well as capillary occlusion, while capillary RBC velocity increased. Conclusions: 10% glycerol solution was able to prevent microvascular alterations due to BCCAO protecting cerebral tissue. The effects appear to be due to hyperosmolality causing stimulation of K<sub>ATP</sub> channels, increase in vessel wall shear stress and release of nitric oxide.

          Related collections

          Author and article information

          Journal
          JVR
          J Vasc Res
          10.1159/issn.1018-1172
          Journal of Vascular Research
          S. Karger AG
          1018-1172
          1423-0135
          2008
          February 2008
          12 October 2007
          : 45
          : 2
          : 89-102
          Affiliations
          aDepartment of Physiology and Biochemistry, University of Pisa, Pisa, and bDepartment of Neuroscience, Federico II University Medical School, Naples, Italy
          Article
          109818 J Vasc Res 2008;45:89–102
          10.1159/000109818
          17934320
          869c1748-170b-4e75-bd72-3dd7964bf7ba
          © 2007 S. Karger AG, Basel

          Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

          History
          : 18 October 2006
          : 04 July 2007
          Page count
          Figures: 9, Tables: 7, References: 44, Pages: 14
          Categories
          Research Paper

          General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
          Bilateral common carotid artery occlusion,Pial microcirculation,Reperfusion,Nitric oxide,NG-nitro-<italic>L</italic>-arginine-methyl ester,Hypertonic glycerol,Sodium pyruvate,Papaverine,Glibenclamide,NG-nitro-<italic>L</italic>-arginine

          Comments

          Comment on this article