12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Near-infrared uncaging or photosensitizing dictated by oxygen tension

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Existing strategies that use tissue-penetrant near-infrared light for the targeted treatment of cancer typically rely on the local generation of reactive oxygen species. This approach can be impeded by hypoxia, which frequently occurs in tumour microenvironments. Here we demonstrate that axially unsymmetrical silicon phthalocyanines uncage small molecules preferentially in a low-oxygen environment, while efficiently generating reactive oxygen species in normoxic conditions. Mechanistic studies of the uncaging reaction implicate a photoredox pathway involving photoinduced electron transfer to generate a key radical anion intermediate. Cellular studies demonstrate that the biological mechanism of action is O 2-dependent, with reactive oxygen species-mediated phototoxicity in normoxic conditions and small molecule uncaging in hypoxia. These studies provide a near-infrared light-targeted treatment strategy with the potential to address the complex tumour landscape through two distinct mechanisms that vary in response to the local O 2 environment.

          Abstract

          The generation of reactive oxygen species (ROS) in photodynamic cancer treatments is limited by low intraturmoural oxygen availability. Here the authors show that irradiation of a silicon phthalocyanine leads to uncaging of a biologically active molecule or to ROS formation in an oxygen-dependent manner.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer Cell-Selective In Vivo Near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules

          Three major modes of cancer therapies, surgery, radiation and chemotherapy, have been the mainstay of modern oncologic therapy. To minimize side effects, molecular targeted cancer therapies including armed antibody therapy have been developed with limited success. In this study, we developed a new type of molecular targeted cancer therapy, photoimmunotherapy (PIT), employing a target-specific photosensitizer based on a near infrared (NIR) phthalocyanine dye, IR700, conjugated to monoclonal antibodies (MAb) targeting epidermal growth factor receptors (EGFR). Cell death was induced immediately only upon irradiating, MAb-IR700 bound, target cells with NIR light. In vivo tumor shrinkage after irradiation with NIR light was observed only in target EGFR-expressing cells. The MAb-IR700 conjugates were most effective when bound to the cell membrane, producing no phototoxicity when not bound, suggesting a different mechanism for PIT compared with conventional photodynamic therapies. Target selective PIT enables treatment of cancer based on MAb binding on the cell membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of cell cycle by flow cytometry.

            Described are four widely used procedures to analyze the cell cycle by flow cytometry. The first two are based on univariate analysis of cellular DNA content following cell staining with either propidium iodide (PI) or 4',6'-diamidino-2-phenylindole (DAPI) and deconvolution of the cellular DNA content frequency histograms. This approach reveals distribution of cells in three major phases of the cycle (G1 vs S vs G2/M) and makes it possible to detect apoptotic cells with fractional DNA content. The third approach is based on the bivariate analysis of DNA content and proliferation-associated proteins. The expression of cyclin D, cyclin E, cyclin A, or cyclin B1 vs DNA content is presented as an example. This approach allows one to distinguish, for example, G0 from G1 cells, identify mitotic cells, or relate expression of other intracellular proteins to the cell cycle position. The fourth procedure relies on the detection of 5'-bromo-2'-deoxyuridine (BrdU) incorporation to label the DNA-replicating cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatially resolved cellular responses to singlet oxygen.

              Singlet oxygen (1O2) is unique amongst reactive oxygen species formed in cells in that it is an excited state molecule with an inherent upper lifetime of 4 micros in water. Whether the lifetime of 1O2 in cells is shortened by reactions with cellular molecules or reaches the inherent maximum value is still unclear. However, even with the maximum lifetime, the diffusion radius is only approximately 220 nm during three lifetimes (approximately 5% 1O2 remaining), much shorter than cellular dimensions indicating that the primary reactions of 1O2 will be subcellularly localized near the site of 1O2 formation. This fact has raised the question of whether spatially resolved cellular responses to 1O2 occur, i.e. whether responses can be initiated by generation and reaction of 1O2 at a particular subcellular location that would not have been produced by 1O2 generation at other subcellular sites. In this paper, we discuss examples of spatially resolved responses initiated by 1O2 as a function of distance from the site of generation of 1O2. Three levels are recognized, namely, a molecular level where the primary oxidation product directly modifies the behavior of a cell, an organelle level where the initial photo-oxidation products initiate mechanisms that are unique to the organelle and the cellular level where mediators diffuse from their site of formation to the target molecules that initiate the response. These examples indicate that, indeed, spatially resolved responses to 'O2 occur in cells.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                17 November 2016
                2016
                : 7
                : 13378
                Affiliations
                [1 ]Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute , Frederick, Maryland 21702, USA
                Author notes
                Article
                ncomms13378
                10.1038/ncomms13378
                5476797
                27853134
                86a471c7-4dcc-4a81-92f3-767eb34a797e
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 April 2016
                : 19 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article