Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Pathways Controlling Trigeminal and Auditory Nerve-Evoked Abducens Eyeblink Reflexes in Pond Turtles

      ,

      Brain, Behavior and Evolution

      S. Karger AG

      Conditioning, in vitro, Abducens, Trigeminal, Auditory, Turtles, Reptiles, Eyeblink

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An in vitro brain stem preparation from turtles exhibits a neural correlate of eyeblink classical conditioning during pairing of auditory (CS) and trigeminal (US) nerve stimulation while recording from the abducens nerve. The premotor neuronal circuits controlling abducens nerve-mediated eyeblinks in turtles have not been previously described, which is a necessary step for understanding cellular mechanisms of conditioning in this preparation. The purpose of the present study was to neuroanatomically define the premotor pathways that underlie the trigeminal and auditory nerve-evoked abducens eyeblink responses. The results show that the principal sensory trigeminal nucleus forms a disynaptic pathway from both the trigeminal and auditory nerves to the principal and accessory abducens motor nuclei. Additionally, the principal abducens nucleus receives vestibular inputs, whereas the accessory nucleus receives input from the cochlear nucleus. The late R2-like component of abducens nerve responses is mediated by the spinal trigeminal nucleus in the medulla. Both the principal sensory trigeminal nucleus and the abducens motor nuclei receive CS-US convergence and therefore both, or either, might be considered potential sites of synapse modification during in vitro abducens conditioning. Further data are required to determine the role of the principal sensory trigeminal nucleus in in vitro conditioning.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning.

           J. Kim (1997)
          There is increasing evidence that, in addition to its major functional role in the regulation of fine motor control, the cerebellum is involved in other important functions, such as sensory-motor learning and memory. Classical conditioning of the eyeblink or nictitating membrane response (and other discrete behavioral responses) is a form of sensory-motor learning that depends crucially upon the cerebellum. Within the cerebellum, however, the relative importance of the cerebellar cortex and the deep cerebellar nuclei in eyeblink conditioning is unclear and disputed. Recent studies employing various mutant mice provide an effective approach to resolving this controversy. Eyeblink conditioning in spontaneous mutant mice deficit in Purkinje cells, the exclusive output neurons of the cerebellar cortex, indicate that both the cerebellar cortex and the interpositus nucleus are important. Furthermore, studies involving gene knockout mice suggest that long-term depression, a process of synaptic plasticity occurring in Purkinje cells, might be involved in eyeblink conditioning.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The trigeminally evoked blink reflex

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunocytochemical localization of glutamate receptor subunits in the brain stem and cerebellum of the turtle Chrysemys picta.

               J A Keifer,  T. Carr (2000)
              The regional distribution of ionotropic (AMPA and NMDA) and metabotropic (mGluR1alpha) glutamate receptor subunits was examined in the brain stem and cerebellum of the pond turtle, Chrysemys picta, by using immunocytochemistry and light microscopy. Subunit-specific antibodies that recognize NMDAR1, GluR1, GluR4, and mGluR1alpha were used to identify immunoreactive nuclei in the brain stem and cerebellum. Considerable immunoreactivity in the turtle brain stem and cerebellum was observed with regional differences occurring primarily in the intensity of staining with the antibodies. The red nucleus, lateral reticular nucleus and cerebellum labeled intensely for NMDAR1 and moderately for GluR1. The cerebellum also labeled strongly for mGluR1alpha. All of the cranial nerve nuclei labeled intensely for NMDAR1 and to varying degrees for GluR1, GluR4, and mGluR1alpha. Counterstaining revealed the presence of neuronal somata where there were no immunoreactive neurons in individual nuclei. This finding suggests that there are subpopulations of immunoreactive neurons within a given nucleus that bear different glutamate receptor subunit compositions. The results suggest that the glutamate receptor subunit distribution in the brain stem and cerebellum of turtles is similar to that reported for rats. Additionally, there is considerable colocalization of NMDA and AMPA receptors as revealed by light microscopy. These results have implications for the organization of neural circuits that control motor behavior in turtles, and, generally, for the function of brain stem and cerebellar neural circuits in vertebrates. Copyright 2000 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Journal
                BBE
                Brain Behav Evol
                10.1159/issn.0006-8977
                Brain, Behavior and Evolution
                S. Karger AG
                0006-8977
                1421-9743
                2004
                October 2004
                07 October 2004
                : 64
                : 4
                : 207-222
                Affiliations
                Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, S. Dak., USA
                Article
                80242 Brain Behav Evol 2004;64:207–222
                10.1159/000080242
                15319552
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 11, Tables: 2, References: 33, Pages: 16
                Categories
                Original Paper

                Comments

                Comment on this article