42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Online Regret Bounds for Undiscounted Continuous Reinforcement Learning

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We derive sublinear regret bounds for undiscounted reinforcement learning in continuous state space. The proposed algorithm combines state aggregation with the use of upper confidence bounds for implementing optimism in the face of uncertainty. Beside the existence of an optimal policy which satisfies the Poisson equation, the only assumptions made are Holder continuity of rewards and transition probabilities.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: not found
          • Article: not found

          The Nonstochastic Multiarmed Bandit Problem

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Multi-Armed Bandits in Metric Spaces

            In a multi-armed bandit problem, an online algorithm chooses from a set of strategies in a sequence of trials so as to maximize the total payoff of the chosen strategies. While the performance of bandit algorithms with a small finite strategy set is quite well understood, bandit problems with large strategy sets are still a topic of very active investigation, motivated by practical applications such as online auctions and web advertisement. The goal of such research is to identify broad and natural classes of strategy sets and payoff functions which enable the design of efficient solutions. In this work we study a very general setting for the multi-armed bandit problem in which the strategies form a metric space, and the payoff function satisfies a Lipschitz condition with respect to the metric. We refer to this problem as the "Lipschitz MAB problem". We present a complete solution for the multi-armed problem in this setting. That is, for every metric space (L,X) we define an isometry invariant which bounds from below the performance of Lipschitz MAB algorithms for X, and we present an algorithm which comes arbitrarily close to meeting this bound. Furthermore, our technique gives even better results for benign payoff functions.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adaptive-resolution reinforcement learning with polynomial exploration in deterministic domains

                Bookmark

                Author and article information

                Journal
                1302.2550

                Artificial intelligence
                Artificial intelligence

                Comments

                Comment on this article