76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      SnoRNA Snord116 (Pwcr1/MBII-85) Deletion Causes Growth Deficiency and Hyperphagia in Mice

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prader-Willi syndrome (PWS) is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a ∼4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85) in PWS. To test this hypothesis, we created a ∼150 kb deletion of the >40 copies of Snord116 (Pwcr1/MBII-85) in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C.

          The Prader-Willi syndrome is a congenital disease that is caused by the loss of paternal gene expression from a maternally imprinted region on chromosome 15. This region contains a small nucleolar RNA (snoRNA), HBII-52, that exhibits sequence complementarity to the alternatively spliced exon Vb of the serotonin receptor 5-HT(2C)R. We found that HBII-52 regulates alternative splicing of 5-HT(2C)R by binding to a silencing element in exon Vb. Prader-Willi syndrome patients do not express HBII-52. They have different 5-HT(2C)R messenger RNA (mRNA) isoforms than healthy individuals. Our results show that a snoRNA regulates the processing of an mRNA expressed from a gene located on a different chromosome, and the results indicate that a defect in pre-mRNA processing contributes to the Prader-Willi syndrome.
            • Record: found
            • Abstract: found
            • Article: not found

            Small nucleolar RNAs: an abundant group of noncoding RNAs with diverse cellular functions.

            Small nucleolar RNAs represent an abundant, evolutionarily ancient group of noncoding RNAs which possess impressively diverse functions ranging from 2'-O-methylation and pseudouridylation of various classes of RNAs, through nucleolytic processing of rRNAs to the synthesis of telomeric DNA.
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization.

              We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11-q13, within a region implicated in the Prader-Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2'-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                5 March 2008
                : 3
                : 3
                : e1709
                Affiliations
                [1 ]Department of Genetics, Stanford University, Stanford, California, United States of America
                [2 ]Department of Psychiatry and Behavioral Science, Stanford University, Stanford, California, United States of America
                [3 ]Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
                [4 ]Department of Pediatrics, University of California Los Angeles, Los Angeles, California, United States of America
                [5 ]Department of Pediatrics, Stanford University, Stanford, California, United States of America
                University of Massachusetts Medical School, United States of America
                Author notes

                Conceived and designed the experiments: UF FD. Performed the experiments: HL FD SZ NS. Analyzed the data: SC UF HL FD SZ NS. Wrote the paper: UF FD.

                Article
                07-PONE-RA-03147
                10.1371/journal.pone.0001709
                2248623
                18320030
                86d6f490-2622-4577-b1cd-c7b86c5f1ae1
                Ding et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 December 2007
                : 21 January 2008
                Page count
                Pages: 18
                Categories
                Research Article
                Molecular Biology
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Epigenetics
                Neuroscience/Behavioral Neuroscience
                Neuroscience/Neurodevelopment
                Diabetes and Endocrinology/Obesity
                Neurological Disorders/Developmental and Pediatric Neurology
                Nutrition/Obesity
                Pediatrics and Child Health/Child Development
                Diabetes and Endocrinology/Obesity
                Genetics and Genomics/Disease Models
                Genetics and Genomics/Epigenetics
                Molecular Biology
                Neurological Disorders/Developmental and Pediatric Neurology
                Neuroscience/Behavioral Neuroscience
                Neuroscience/Neurodevelopment
                Nutrition/Eating Disorders
                Nutrition/Obesity
                Pediatrics and Child Health/Child Development

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log