Blog
About

10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Real-time optical spectroscopy of VUV irradiated pyrene:H_2O interstellar ice

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper describes a near-UV/VIS study of a pyrene:H_2O interstellar ice analogue at 10 K using optical absorption spectroscopy. A new experimental approach makes it possible to irradiate the sample with vacuum ultraviolet (VUV) light (7-10.5 eV) while simultaneously recording spectra in the 240-1000 nm range with subsecond time resolution. Both spectroscopic and dynamic information on VUV processed ices are obtained in this way. This provides a powerful tool to follow, in-situ and in real time, the photophysical and photochemical processes induced by VUV irradiation of a polycyclic aromatic hydrocarbon containing inter- and circumstellar ice analogue. Results on the VUV photolysis of a prototype sample - strongly diluted pyrene in H_2O ice - are presented. In addition to the pyrene cation (Py+), other products - hydroxypyrene (PyOH), possibly hydroxypyrene cation (PyOH+), and pyrene/pyrenolate anion (Py-/PyO-) - are observed. It is found that the charge remains localized in the ice, also after the VUV irradiation is stopped. The astrochemical implications and observational constraints are discussed.

          Related collections

          Author and article information

          Journal
          08 June 2009
          2009-07-01
          Article
          10.1088/0004-
          0906.1513

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          Custom metadata
          Astrophys.J.700:56-62,2009
          9 pages, 6 figures
          astro-ph.IM

          Comments

          Comment on this article