13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanistic Models Predict Efficacy of CCR5‐Deficient Stem Cell Transplants in HIV Patient Populations

      research-article
      1 , 2 , 1 , 2 ,
      CPT: Pharmacometrics & Systems Pharmacology
      John Wiley and Sons Inc.

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combination antiretroviral therapy (cART) effectively suppresses viral load in HIV‐infected individuals, but it is not a cure. Bone marrow transplants using HIV‐resistant stem cells have renewed hope that cure is achievable but key questions remain e.g., what percentage of stem cells must be HIV‐resistant to achieve cure?. As few patients have undergone transplants, we built a mechanistic model of HIV/AIDS to approach this problem. The model includes major players of infection, reproduces the complete course of the disease, and simulates crucial components of clinical treatments, such as cART, irradiation, host recovery, gene augmentation, and donor chimerism. Using clinical data from 172 cART‐naïve HIV‐infected individuals, we created virtual populations to predict performance of CCR5‐deficient stem‐cell therapies and explore interpatient variability. We validated our model against a published clinical study of CCR5‐modified T‐cell therapy. Our model predicted that donor chimerism must exceed 75% to achieve 90% probability of cure across patient populations.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection.

          Treatment of infected patients with ABT-538, an inhibitor of the protease of human immunodeficiency virus type 1 (HIV-1), causes plasma HIV-1 levels to decrease exponentially (mean half-life, 2.1 +/- 0.4 days) and CD4 lymphocyte counts to rise substantially. Minimum estimates of HIV-1 production and clearance and of CD4 lymphocyte turnover indicate that replication of HIV-1 in vivo is continuous and highly productive, driving the rapid turnover of CD4 lymphocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection.

            The capacity of HIV-1 to establish latent infection of CD4+ T cells may allow viral persistence despite immune responses and antiretroviral therapy. Measurements of infectious virus and viral RNA in plasma and of infectious virus, viral DNA and viral messenger RNA species in infected cells all suggest that HIV-1 replication continues throughout the course of infection. Uncertainty remains over what fraction of CD4+ T cells are infected and whether there are latent reservoirs for the virus. We show here that during the asymptomatic phase of infection there is an extremely low total body load of latently infected resting CD4+ T cells with replication-competent integrated provirus (<10(7) cells). The most prevalent form of HIV-1 DNA in resting and activated CD4+ T cells is a full-length, linear, unintegrated form that is not replication competent. The infection progresses even though at any given time in the lymphoid tissues integrated HIV-1 DNA is present in only a minute fraction of the susceptible populations, including resting and activated CD4+ T cells and macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time.

              A new mathematical model was used to analyze a detailed set of human immunodeficiency virus-type 1 (HIV-1) viral load data collected from five infected individuals after the administration of a potent inhibitor of HIV-1 protease. Productively infected cells were estimated to have, on average, a life-span of 2.2 days (half-life t 1/2 = 1.6 days), and plasma virions were estimated to have a mean life-span of 0.3 days (t 1/2 = 0.24 days). The estimated average total HIV-1 production was 10.3 x 10(9) virions per day, which is substantially greater than previous minimum estimates. The results also suggest that the minimum duration of the HIV-1 life cycle in vivo is 1.2 days on average, and that the average HIV-1 generation time--defined as the time from release of a virion until it infects another cell and causes the release of a new generation of viral particles--is 2.6 days. These findings on viral dynamics provide not only a kinetic picture of HIV-1 pathogenesis, but also theoretical principles to guide the development of treatment strategies.
                Bookmark

                Author and article information

                Journal
                CPT Pharmacometrics Syst Pharmacol
                CPT Pharmacometrics Syst Pharmacol
                10.1002/(ISSN)2163-8306
                PSP4
                CPT: Pharmacometrics & Systems Pharmacology
                John Wiley and Sons Inc. (Hoboken )
                2163-8306
                16 February 2016
                February 2016
                : 5
                : 2 ( doiID: 10.1002/psp4.v5.2 )
                : 82-90
                Affiliations
                [ 1 ]Institute for Computational Medicine, Johns Hopkins University Baltimore MarylandUSA
                [ 2 ] Department of Biomedical EngineeringJohns Hopkins University Baltimore MarylandUSA
                Author notes
                [*] [* ]Correspondence: F Mac Gabhann ( feilim@ 123456jhu.edu )
                Article
                PSP412059
                10.1002/psp4.12059
                4761230
                26933519
                86fc88f5-06cc-4d5e-bd5d-bdaca1e047d4
                © 2016 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics

                This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                : 09 October 2015
                : 06 January 2016
                Page count
                Pages: 9
                Funding
                Funded by: Ruth H. Aranow Fellowship
                Funded by: Siebel Scholarship
                Categories
                Original Article
                Original Articles
                Custom metadata
                2.0
                psp412059
                February 2016
                Converter:WILEY_ML3GV2_TO_NLMPMC version:4.7.6 mode:remove_FC converted:20.02.2016

                Comments

                Comment on this article