24
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nest architecture and pollen hosts of the boreoalpine osmiine bee species Hoplitis (Alcidamea) tuberculata (Hymenoptera, Megachilidae)

      Journal of Hymenoptera Research
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although Hoplitis tuberculata is a rather common bee species in the upper montane and subalpine zone of the Alps, its biology is only fragmentarily known. In the present publication, both nest architecture and pollen host spectrum are described. H. tuberculata nests in insect borings in dead wood, where one to several brood cells are built in a linear series. Examination of four nests obtained from trap nests revealed three peculiar characteristics of its nest architecture: i) the 0.3-0.5 cm thick partitions between the brood cells are three-layered consisting of two walls built from masticated leaves which enclose an interlayer that is densely packed with pebbles, earth crumbs and other small particles; ii) in the majority of the nests, a vestibule varying in length from 2.2-8.9 cm and loosely filled with small particles is present between the outermost cell partition and the nest plug; iii) the nest is sealed by a 1.2-1.9 cm long plug consisting of two walls of masticated leaves which enclose a space that is densely packed with small particles and divided up by one to three additional walls. The nest architecture of H. tuberculata is unique among Palaearctic osmiine bees; however, it corresponds to that of three North American species closely related to H. tuberculata. Microscopical analysis of female pollen loads and brood cell provisions revealed that H. tuberculata is polylectic with a strong preference for Fabaceae. Among the Fabaceae, Lotus and Hippocrepis were by far the most important pollen hosts. Non-Fabaceae taxa represented by substantial proportions in pollen loads or cell provisions were Helianthemum (Cistaceae), Vaccinium (Ericaceae) and Rubus (Rosaceae).

          Related collections

          Most cited references10

          • Record: found
          • Abstract: not found
          • Article: not found

          Substrates and Materials Used for Nesting by North American Osmia Bees (Hymenoptera: Apiformes: Megachilidae)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Patterns of host-plant choice in bees of the genus Chelostoma: the constraint hypothesis of host-range evolution in bees.

            To trace the evolution of host-plant choice in bees of the genus Chelostoma (Megachilidae), we assessed the host plants of 35 Palearctic, North American and Indomalayan species by microscopically analyzing the pollen loads of 634 females and reconstructed their phylogenetic history based on four genes and a morphological dataset, applying both parsimony and Bayesian methods. All species except two were found to be strict pollen specialists at the level of plant family or genus. These oligolectic species together exploit the flowers of eight different plant orders that are distributed among all major angiosperm lineages. Based on ancestral state reconstruction, we found that oligolecty is the ancestral state in Chelostoma and that the two pollen generalists evolved from oligolectic ancestors. The distinct pattern of host broadening in these two polylectic species, the highly conserved floral specializations within the different clades, the exploitation of unrelated hosts with a striking floral similarity as well as a recent report on larval performance on nonhost pollen in two Chelostoma species clearly suggest that floral host choice is physiologically or neurologically constrained in bees of the genus Chelostoma. Based on this finding, we propose a new hypothesis on the evolution of host range in bees.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Phylogeny and floral hosts of a predominantly pollen generalist group of mason bees (Megachilidae: Osmiini)

                Bookmark

                Author and article information

                Journal
                Journal of Hymenoptera Research
                JHR
                Pensoft Publishers
                1314-2607
                1070-9428
                December 22 2015
                December 22 2015
                : 47
                : 53-64
                Article
                10.3897/JHR.47.7278
                8708097e-8d6d-4682-bd3c-350bb310a30c
                © 2015

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content118

                Cited by4

                Most referenced authors45