40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pervasiveness of Parasites in Pollinators

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees) in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees ( Bombus pascuorum and Bombus terrestris) and a third of wasps ( Vespula vulgaris), as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Decline and conservation of bumble bees.

          Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simple and distinctive microbiota associated with honey bees and bumble bees.

            Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts. © 2010 Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              RNA Viruses in Hymenopteran Pollinators: Evidence of Inter-Taxa Virus Transmission via Pollen and Potential Impact on Non-Apis Hymenopteran Species

              Although overall pollinator populations have declined over the last couple of decades, the honey bee (Apis mellifera) malady, colony collapse disorder (CCD), has caused major concern in the agricultural community. Among honey bee pathogens, RNA viruses are emerging as a serious threat and are suspected as major contributors to CCD. Recent detection of these viral species in bumble bees suggests a possible wider environmental spread of these viruses with potential broader impact. It is therefore vital to study the ecology and epidemiology of these viruses in the hymenopteran pollinator community as a whole. We studied the viral distribution in honey bees, in their pollen loads, and in other non-Apis hymenopteran pollinators collected from flowering plants in Pennsylvania, New York, and Illinois in the United States. Viruses in the samples were detected using reverse transcriptase-PCR and confirmed by sequencing. For the first time, we report the molecular detection of picorna-like RNA viruses (deformed wing virus, sacbrood virus and black queen cell virus) in pollen pellets collected directly from forager bees. Pollen pellets from several uninfected forager bees were detected with virus, indicating that pollen itself may harbor viruses. The viruses in the pollen and honey stored in the hive were demonstrated to be infective, with the queen becoming infected and laying infected eggs after these virus-contaminated foods were given to virus-free colonies. These viruses were detected in eleven other non-Apis hymenopteran species, ranging from many solitary bees to bumble bees and wasps. This finding further expands the viral host range and implies a possible deeper impact on the health of our ecosystem. Phylogenetic analyses support that these viruses are disseminating freely among the pollinators via the flower pollen itself. Notably, in cases where honey bee apiaries affected by CCD harbored honey bees with Israeli Acute Paralysis virus (IAPV), nearby non-Apis hymenopteran pollinators also had IAPV, while those near apiaries without IAPV did not. In containment greenhouse experiments, IAPV moved from infected honey bees to bumble bees and from infected bumble bees to honey bees within a week, demonstrating that the viruses could be transmitted from one species to another. This study adds to our present understanding of virus epidemiology and may help explain bee disease patterns and pollinator population decline in general.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                26 January 2012
                : 7
                : 1
                : e30641
                Affiliations
                [1 ]Institute of Integrative and Comparative Biology, University of Leeds, Leeds, United Kingdom
                [2 ]National Bee Unit, Food and Environment Research Agency, York, United Kingdom
                [3 ]Center for Infection and Immunity, Columbia University, New York, New York, United States of America
                [4 ]Netherlands Centre for Biodiversity NCB Naturalis, Leiden, The Netherlands
                [5 ]School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
                Ghent University, Belgium
                Author notes

                Conceived and designed the experiments: WOHH JCB JES GB. Performed the experiments: SEFE KER LL. Analyzed the data: WOHH SP. Contributed reagents/materials/analysis tools: JH. Wrote the paper: WOHH SEFE KER SP GB JCB JES.

                Article
                PONE-D-11-16831
                10.1371/journal.pone.0030641
                3273957
                22347356
                870f9a97-d314-4e0e-af84-04b3e296f2b4
                Evison et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 28 August 2011
                : 24 December 2011
                Page count
                Pages: 7
                Categories
                Research Article
                Biology
                Ecology
                Community Ecology
                Evolutionary Biology
                Zoology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article