51
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Functional Properties of the Hepatitis C Virus p7 Viroporin

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The high prevalence of hepatitis C virus (HCV) infection in the human population has triggered intensive research efforts that have led to the development of curative antiviral therapy. Moreover, HCV has become a role model to study fundamental principles that govern the replication cycle of a positive strand RNA virus. In fact, for most HCV proteins high-resolution X-ray and NMR (Nuclear Magnetic Resonance)-based structures have been established and profound insights into their biochemical and biological properties have been gained. One example is p7, a small hydrophobic protein that is dispensable for RNA replication, but crucial for the production and release of infectious HCV particles from infected cells. Owing to its ability to insert into membranes and assemble into homo-oligomeric complexes that function as minimalistic ion channels, HCV p7 is a member of the viroporin family. This review compiles the most recent findings related to the structure and dual pore/ion channel activity of p7 of different HCV genotypes. The alternative conformations and topologies proposed for HCV p7 in its monomeric and oligomeric state are described and discussed in detail. We also summarize the different roles p7 might play in the HCV replication cycle and highlight both the ion channel/pore-like function and the additional roles of p7 unrelated to its channel activity. Finally, we discuss possibilities to utilize viroporin inhibitors for antagonizing p7 ion channel/pore-like activity.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: found
          • Article: not found

          Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras.

          Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
            • Record: found
            • Abstract: found
            • Article: not found

            Influenza virus M2 protein has ion channel activity.

            The influenza virus M2 protein was expressed in Xenopus laevis oocytes and shown to have an associated ion channel activity selective for monovalent ions. The anti-influenza virus drug amantadine hydrochloride significantly attenuated the inward current induced by hyperpolarization of oocyte membranes. Mutations in the M2 membrane-spanning domain that confer viral resistance to amantadine produced currents that were resistant to the drug. Analysis of the currents of these altered M2 proteins suggests that the channel pore is formed by the transmembrane domain of the M2 protein. The wild-type M2 channel was found to be regulated by pH. The wild-type M2 ion channel activity is proposed to have a pivotal role in the biology of influenza virus infection.
              • Record: found
              • Abstract: found
              • Article: not found

              Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus.

              Hepatitis C virus (HCV) infection is a global health concern affecting an estimated 3% of the world's population. Recently, cell culture systems have been established, allowing recapitulation of the complete virus life cycle for the first time. Since the HCV proteins p7 and NS2 are not predicted to be major components of the virion, nor are they required for RNA replication, we investigated whether they might have other roles in the viral life cycle. Here we utilize the recently described infectious J6/JFH chimera to establish that the p7 and NS2 proteins are essential for HCV infectivity. Furthermore, unprocessed forms of p7 and NS2 were not required for this activity. Mutation of two conserved basic residues, previously shown to be important for the ion channel activity of p7 in vitro, drastically impaired infectious virus production. The protease domain of NS2 was required for infectivity, whereas its catalytic active site was dispensable. We conclude that p7 and NS2 function at an early stage of virion morphogenesis, prior to the assembly of infectious virus.

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                06 August 2015
                August 2015
                : 7
                : 8
                : 4461-4481
                Affiliations
                [1 ]Department of Infectious Diseases, Molecular Virology, University of Heidelberg, 69120 Heidelberg, Germany
                [2 ]Division of Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
                Author notes
                [* ]Authors to whom correspondence should be addressed; E-Mails: vanesa.madan@ 123456med.uni-heidelberg.de (V.M.); ralf_bartenschlager@ 123456med.uni-heidelberg.de (R.B.); Tel.: +49-6221-56-6306 (V.M.); +49-6221-56-4569 (R.B.).
                Article
                viruses-07-02826
                10.3390/v7082826
                4576187
                26258788
                871a44b8-3b6f-4a4f-acd3-d5499e42d216
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 June 2015
                : 30 July 2015
                Categories
                Review

                Microbiology & Virology
                hepatitis c virus,p7 protein,viroporins,small membrane protein,ion channel activity,oligomeric structure,pore-like function,virus assembly and release,antiviral target

                Comments

                Comment on this article

                Related Documents Log