10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Developments in Simulating and Parameterizing Interactions Between the Southern Ocean and the Antarctic Ice Sheet

      , ,
      Current Climate Change Reports
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: not found
          • Article: not found

          Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antarctic ice-sheet loss driven by basal melting of ice shelves.

            Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Atmospheric and oceanic forcing have the potential to reduce the thickness and extent of floating ice shelves, potentially limiting their ability to buttress the flow of grounded tributary glaciers. Indeed, recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. But the extent and magnitude of ice-shelf thickness change, the underlying causes of such change, and its link to glacier flow rate are so poorly understood that its future impact on the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary control of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet leading to accelerated glacier flow. The highest thinning rates occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen seas, and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic ice-sheet mass balance, and hence global sea level, on annual to decadal timescales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica.

              Resting atop a deep marine basin, the West Antarctic Ice Sheet has long been considered prone to instability. Using a numerical model, we investigated the sensitivity of Thwaites Glacier to ocean melt and whether its unstable retreat is already under way. Our model reproduces observed losses when forced with ocean melt comparable to estimates. Simulated losses are moderate ( 1 mm per year of sea-level rise) collapse in the different simulations within the range of 200 to 900 years. Copyright © 2014, American Association for the Advancement of Science.
                Bookmark

                Author and article information

                Journal
                Current Climate Change Reports
                Curr Clim Change Rep
                Springer Nature
                2198-6061
                December 2017
                October 24 2017
                December 2017
                : 3
                : 4
                : 316-329
                Article
                10.1007/s40641-017-0071-0
                871e24c4-f3e6-4efc-bbe1-1225a8bdb9e3
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article