7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human ApoA-IV Overexpression in Transgenic Mice Induces cAMP-Stimulated Cholesterol Efflux From J774 Macrophages to Whole Serum

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract —The role of apolipoprotein A-IV (apoA-IV) in lipoprotein metabolism has not been established. The aim of the present study was to investigate the role of apoA-IV in reverse cholesterol transport by comparing cellular cholesterol efflux to serum or serum fractions from control mice and from mice transgenic for human apoA-IV (HuA-IVTg mice). When Fu5AH hepatoma cells were used, the cholesterol efflux to serum from either control or transgenic mice was similar. When control J774 macrophage cells were used, a comparison of efflux to serum or lipoprotein-deficient serum (LPDS) failed to demonstrate any differences between control and transgenic mice. In contrast, when the J774 cells were pretreated with cAMP, there was a stimulation of efflux to whole serum or LPDS from HuA-IVTg mice. cAMP treatment had no effect on efflux to serum or LPDS from control mice. Pretreatment of the cells with cAMP did not enhance the efflux response to high density lipoprotein isolated from HuA-IVTg mouse serum. Our results suggest that apoA-IV, unassociated with high density lipoprotein particles, is responsible for enhanced cholesterol efflux. This study illustrates the role of lipid-free apolipoproteins in mediating cellular cholesterol efflux with use of a biological fluid and is potentially of physiological relevance, especially in apolipoprotein-rich extravascular fluids.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1.

          Tangier disease (TD) was first discovered nearly 40 years ago in two siblings living on Tangier Island. This autosomal co-dominant condition is characterized in the homozygous state by the absence of HDL-cholesterol (HDL-C) from plasma, hepatosplenomegaly, peripheral neuropathy and frequently premature coronary artery disease (CAD). In heterozygotes, HDL-C levels are about one-half those of normal individuals. Impaired cholesterol efflux from macrophages leads to the presence of foam cells throughout the body, which may explain the increased risk of coronary heart disease in some TD families. We report here refining of our previous linkage of the TD gene to a 1-cM region between markers D9S271 and D9S1866 on chromosome 9q31, in which we found the gene encoding human ATP cassette-binding transporter 1 (ABC1). We also found a change in ABC1 expression level on cholesterol loading of phorbol ester-treated THP1 macrophages, substantiating the role of ABC1 in cholesterol efflux. We cloned the full-length cDNA and sequenced the gene in two unrelated families with four TD homozygotes. In the first pedigree, a 1-bp deletion in exon 13, resulting in truncation of the predicted protein to approximately one-fourth of its normal size, co-segregated with the disease phenotype. An in-frame insertion-deletion in exon 12 was found in the second family. Our findings indicate that defects in ABC1, encoding a member of the ABC transporter superfamily, are the cause of TD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.

            Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.

              Tangier disease (TD) is an autosomal recessive disorder of lipid metabolism. It is characterized by absence of plasma high-density lipoprotein (HDL) and deposition of cholesteryl esters in the reticulo-endothelial system with splenomegaly and enlargement of tonsils and lymph nodes. Although low HDL cholesterol is associated with an increased risk for coronary artery disease, this condition is not consistently found in TD pedigrees. Metabolic studies in TD patients have revealed a rapid catabolism of HDL and its precursors. In contrast to normal mononuclear phagocytes (MNP), MNP from TD individuals degrade internalized HDL in unusual lysosomes, indicating a defect in cellular lipid metabolism. HDL-mediated cholesterol efflux and intracellular lipid trafficking and turnover are abnormal in TD fibroblasts, which have a reduced in vitro growth rate. The TD locus has been mapped to chromosome 9q31. Here we present evidence that TD is caused by mutations in ABC1, encoding a member of the ATP-binding cassette (ABC) transporter family, located on chromosome 9q22-31. We have analysed five kindreds with TD and identified seven different mutations, including three that are expected to impair the function of the gene product. The identification of ABC1 as the TD locus has implications for the understanding of cellular HDL metabolism and reverse cholesterol transport, and its association with premature cardiovascular disease.
                Bookmark

                Author and article information

                Journal
                Arteriosclerosis, Thrombosis, and Vascular Biology
                ATVB
                Ovid Technologies (Wolters Kluwer Health)
                1079-5642
                1524-4636
                May 2000
                May 2000
                : 20
                : 5
                : 1283-1292
                Affiliations
                [1 ]From the Laboratoire de Biochimie Appliquée (N.F., J.-L.P., M.S., N.M.), Faculté des Sciences Pharmaceutiques et Biologiques, Châtenay-Malabry, France; the Laboratoire de Biochimie (N.F., V.A., J.-L.P., N.M.), Hôpital Broussais, Assistance Publique-Hôpitaux de Paris, Paris, France; the Laboratoire Rhône-Poulenc-Rorer (N.D.), Division Gencell, Département d’Athérosclérose, Vitry sur Seine, France; and the MCP Hahnemann School of Medicine (G.H.R.), Biochemistry Department, Philadelphia, Pa.
                Article
                10.1161/01.ATV.20.5.1283
                10807744
                871e44ff-61d8-4b3a-a4dd-6f3198ac9a7b
                © 2000
                History

                Comments

                Comment on this article