7
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Niacin as a drug repositioning candidate for hyperphosphatemia management in dialysis patients

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nearly all patients with end-stage renal disease develop hyperphosphatemia. These patients typically require oral phosphate binders for life-long phosphorus management, in addition to dietary restrictions and maintenance dialysis. Recently, niacin, a traditional antilipemic agent, drew attention as an experimental treatment for hyperphosphatemia. The purpose of this article was to report on new findings regarding niacin’s novel effects and to review the possibility of repurposing niacin for hyperphosphatemia treatment in dialysis patients by elucidating its safety and efficacy profiles along with its synergistic clinical benefits. Following approval from the Institutional Review Board, we tracked the yearly trends of order frequency of niacin in comparison with statins and sevelamer in a tertiary care hospital. Also, a Cochrane Library and PubMed literature search was performed to capture prospective clinical trials on niacin’s hypophosphatemic effects in dialysis patients. Niacin use in clinical settings has been on the wane, and the major contribution to that originates from the wide use of statins. Niacin use rates have further plummeted following a trial failure which prompted the suspension of the niacin-laropiprant (a flushing blocker) combination product in the global market. Our literature search identified ten relevant articles. Overall, all studies demonstrated that niacin or nicotinamide (the metabolite form) reduced serum phosphorus levels as well as Ca-P products significantly. Additive beneficial effects on lipid parameters were also observed. Sevelamer appeared superior to niacin in a comparative study, but the study design had several limitations. The intervention dosage for niacin ranged from 375 to 1,500 mg/day, with the average daily dose of approximately 1,000–1,500 mg. Niacin can be a patient-convenient and inexpensive alternative or adjunctive therapy for phosphorus management in dialysis patients. Further well-designed, large-scale, long-term, comparative trials are needed to successfully repurpose niacin for the new indication.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: not found
          • Article: not found

          Oral phosphate binders in patients with kidney failure.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nicotinamide suppresses hyperphosphatemia in hemodialysis patients.

            The use of calcium- or aluminum-based phosphate binders against hyperphosphatemia is limited by the adverse effects of hypercalcemia or aluminum toxicity in long-term hemodialysis. Because nicotinamide is an inhibitor of sodium-dependent phosphate cotransport in rat renal tubule and small intestine, we examined whether nicotinamide reduces serum levels of phosphorus and intact parathyroid hormone (iPTH) in patients undergoing hemodialysis. Sixty-five hemodialysis patients with a serum phosphorus level of more than 6.0 mg/dL after a 2-week washout of calcium carbonate were enrolled in this study. Nicotinamide was administered for 12 weeks. The starting dose was 500 mg/day, and the dose was increased by 250 mg/day every 2 weeks until serum phosphorus levels were well controlled at less than 6.0 mg/dL. A 2-week posttreatment washout period followed the cessation of nicotinamide. Blood samples were collected every week for measurement of serum calcium, phosphorus, lipids, iPTH, and blood nicotinamide adenine dinucleotide (NAD). The mean dose of nicotinamide was 1080 mg/day. The mean blood NAD concentration increased from 9.3 +/- 1.9 nmol/105 erythrocytes before treatment to 13.2 +/- 5.3 nmol/105 erythrocytes after treatment (P < 0.01). The serum phosphorus concentration increased from 5.4 +/- 1.5 mg/dL to 6.9 +/- 1.5 mg/dL with the pretreatment washout, then decreased to 5.4 +/- 1.3 mg/dL after the 12-week nicotinamide treatment (P < 0.0001), and rose again to 6.7 +/- 1.6 mg/dL after the posttreatment washout. Serum calcium levels decreased during the pretreatment washout from 9.1 +/- 0.8 mg/dL to 8.7 +/- 0.7 mg/dL with the cessation of calcium carbonate. No significant changes in serum calcium levels were observed during nicotinamide treatment. Median serum iPTH levels increased with pretreatment washout from 130.0 (32.8 to 394.0) pg/mL to 200.0 (92.5 to 535.0) pg/mL and then decreased from the maximum 230.0 (90.8 to 582.0) pg/mL to 150.0 (57.6 to 518.0) pg/mL after the 12-week nicotinamide treatment (P < 0.05). With nicotinamide, serum high-density lipoprotein (HDL) cholesterol concentrations increased from 47.4 +/- 14.9 mg/dL to 67.2 +/- 22.3 mg/dL (P < 0.0001) and serum low-density lipoprotein (LDL) cholesterol concentrations decreased from 78.9 +/- 18.8 mg/dL to 70.1 +/- 25.3 mg/dL (P < 0.01); serum triglyceride levels did not change significantly. Nicotinamide may provide an alternative for controlling hyperphosphatemia and hyperparathyroidism without inducing hypercalcemia in hemodialysis patients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nicotinamide prevents the development of hyperphosphataemia by suppressing intestinal sodium-dependent phosphate transporter in rats with adenine-induced renal failure.

              Nicotinamide has been shown to inhibit intestinal sodium-dependent phosphate transport activity in normal rats. It was reported recently that type IIb sodium-dependent phosphate co-transporter (NaPi-2b) is a carrier of intestinal phosphate absorption, and that its expression level is regulated by serum 1,25-dihydroxyvitamin D [1,25(OH)(2)D] and Pi levels in normal rats. However, in chronic renal failure (CRF), serum 1,25(OH)(2)D and Pi levels are often abnormal. In a rat model of CRF, we investigated whether short-term nicotinamide administration was effective in reducing intestinal phosphate absorption and, if so, whether the effect was mediated by intestinal NaPi-2b. Adenine-induced CRF rats were given a single daily intrapenitoneal administration of nicotinamide or vehicle solution for 6 days, and time course changes in serum Pi, Ca, blood urea nitrogen (BUN) and creatinine levels were monitored. Intestinal phosphate absorption was examined by oral administration of radiolabelled phosphate on the final day. In addition, NaPi-2b protein content in jejunum brush border membranes was determined. Nicotinamide prevented the progressive increase in serum Pi associated with renal failure and significantly inhibited intestinal Pi absorption as assessed by the influx of orally administered radiolabelled phosphate into the circulation. This effect was accompanied by a decrease in NaPi-2b expression in jejunum brush border membranes. In addition, nicotinamide treatment was also associated with less marked elevations in BUN and serum creatinine and a higher creatinine clearance. Nicotinamide inhibited intestinal Pi absorption in a rat model of CRF, at least in part by inhibiting the expression of NaPi-2b, and appeared to protect against the deterioration of renal function.
                Bookmark

                Author and article information

                Journal
                Ther Clin Risk Manag
                Ther Clin Risk Manag
                Therapeutics and Clinical Risk Management
                Therapeutics and Clinical Risk Management
                Dove Medical Press
                1176-6336
                1178-203X
                2014
                14 October 2014
                : 10
                : 875-883
                Affiliations
                Ajou University College of Pharmacy, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea
                Author notes
                Correspondence: Sooyoung Shin, Ajou University College of Pharmacy, 206, World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-749, Korea, Tel +82 31 219 3456, Fax +82 31 219 3435, Email syshin@ 123456ajou.ac.kr
                Article
                tcrm-10-875
                10.2147/TCRM.S71559
                4206247
                © 2014 Shin and Lee. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Medicine

                dialysis, hyperphosphatemia, niacinamide, nicotinamide, nicotinic acid, niacin

                Comments

                Comment on this article