2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of Heshouwuyin inhibiting the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway in spermatogenic cell apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Chinese herbal compound Heshouwuyin has been shown to downregulate the apoptotic rate of testicular tissue cells in Wistar naturally aging rats, and this effect might be related to the mitochondrial pathway [15]. Apoptotic protease activating factor-1 (Apaf-1) is a major component of the apoptotic complex, which is a key element of the mitochondrial endogenous apoptotic pathway [13]. To further clarify the mechanism of Heshouwuyin in the mitochondrial apoptotic pathway, this study used Apaf-1 as a target to explore the mechanism by which Heshouwuyin inhibits the Apaf-1 pathway of spermatogenic cell apoptosis.

          Methods

          In this study, an aging model of rat spermatogenic cells was established using free radical oxidative damage. Flow cytometry was used to detect the apoptosis rate of germ cells and the inhibitory effect of Heshouwuyin. Apaf-1 was specifically knocked down by siRNA interference technology, and mitochondrial membrane potential was measured. qRT-PCR, Western blotting and immunofluorescence analyses were used to detect the expression of the key genes Cyt c, Caspase-9 and Caspase-3 in the mitochondrial apoptotic pathway of spermatogenic cells.

          Results

          Heshouwuyin reduced the mRNA and protein expression levels of Cyt c, Caspase-9 and Caspase-3 in senescent spermatogenic cells. In these cells, the mRNA and protein expression levels of Cyt c did not change significantly after specific knockdown of Apaf-1, and the mRNA and protein expression levels of Caspase-9 and Caspase-3 decreased significantly. This finding indicated that knockdown of Apaf-1 could decrease the mRNA and protein expression levels of the downstream pro-apoptotic genes Caspase-9 and Caspase-3. Although Cyt c was an upstream gene of Apaf-1, knockdown of Apaf-1 had no significant effect on Cyt c expression.

          Conclusion

          The inhibition of spermatogenic cell apoptosis by Heshouwuyin was closely related to the Cyt c/Apaf-1/Caspase-9/Caspase-3 pathway. The inhibition of apoptosis by Heshouwuyin not only involved the Apaf-1 pathway, but other signaling pathways.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors

          The B cell lymphoma 2 (BCL-2) family of proteins has a key role in regulating apoptosis and is often dysregulated in cancer. This has led to the development of several inhibitors of pro-survival BCL-2 family proteins such as BCL-2, BCL-XL and MCL1, including the BCL-2 inhibitor venetoclax, which has recently gained regulatory approval. Here, Ashkenazi and colleagues discuss the latest progress in developing small-molecule inhibitors of pro-survival BCL-2 family proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update.

            Apoptosis is a critically important biological process that plays an essential role in cell fate and homeostasis. An important component of the apoptotic pathway is the family of proteins commonly known as the B cell lymphoma-2 (Bcl-2). The primary role of Bcl-2 family members is the regulation of apoptosis. Although the structure of Bcl-2 family of proteins was reported nearly 10 years ago, however, it still surprises us with its structural and functional complexity and diversity. A number of studies have demonstrated that Bcl-2 family influences many other cellular processes beyond apoptosis which are generally independent of the regulation of apoptosis, suggesting additional roles for Bcl-2. The disruption of the regulation of apoptosis is a causative event in many diseases. Since the Bcl-2 family of proteins is the key regulator of apoptosis, the abnormalities in its function have been implicated in many diseases including cancer, neurodegenerative disorders, ischemia and autoimmune diseases. In the past few years, our understanding of the mechanism of action of Bcl-2 family of proteins and its implications in various pathological conditions has enhanced significantly. The focus of this review is to summarize the current knowledge on the structure and function of Bcl-2 family of proteins in apoptotic cellular processes. A number of drugs have been developed in the past few years that target different Bcl-2 members. The role of Bcl-2 proteins in the pathogenesis of various diseases and their pharmacological significance as effective molecular therapeutic targets is also discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MAPK signal specificity: the right place at the right time.

              Although the mechanisms that lead to activation of the Ras, extracellular-signal-regulated kinase mitogen-activated protein kinase (Ras/ERK-MAPK) signaling pathway have been studied intensively, the fundamental principles that determine how activation of ERK signaling can result in distinct biological outcomes have only recently received attention. Factors such as cell-surface receptor density, expression of scaffolding proteins, the surrounding extracellular matrix, and the interplay between kinases and phosphatases modulate the strength and duration of ERK signaling. Furthermore, the spatial distribution and temporal qualities of ERK can markedly alter the qualitative and quantitative features of downstream signaling to immediate early genes (IEG) and the expression of IEG-encoded protein products. As a result, IEG products provide a molecular interpretation of ERK dynamics, enabling the cell to program an appropriate biological response.
                Bookmark

                Author and article information

                Contributors
                13933270999@163.com
                nsy1688@163.com
                Journal
                BMC Complement Med Ther
                BMC Complement Med Ther
                BMC Complementary Medicine and Therapies
                BioMed Central (London )
                2662-7671
                11 June 2020
                11 June 2020
                2020
                : 20
                : 180
                Affiliations
                [1 ]GRID grid.256885.4, ISNI 0000 0004 1791 4722, School of Medicine, , Hebei University, ; Baoding, 071002 Hebei Province China
                [2 ]GRID grid.459324.d, Affiliated Hospital of Hebei University, ; Baoding, 071002 Hebei Province China
                [3 ]Nanbao Development Zone Hospital, Tangshan, 063305 Hebei Province China
                [4 ]Baoding No.1 Hospital, Baoding, 071000 Hebei Province China
                Article
                2904
                10.1186/s12906-020-02904-9
                7291440
                32527252
                8721bc05-7e5a-4f0f-bb43-f0ad684219b4
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 31 October 2019
                : 26 March 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 81673714
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                apoptosis,heshouwuyin,spermatogenic cells,apaf-1
                apoptosis, heshouwuyin, spermatogenic cells, apaf-1

                Comments

                Comment on this article