51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis

      ,
      Nature Reviews Microbiology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Listeria monocytogenes is a food-borne pathogen responsible for a disease called listeriosis, which is potentially lethal in immunocompromised individuals. This bacterium, first used as a model to study cell-mediated immunity, has emerged over the past 20 years as a paradigm in infection biology, cell biology and fundamental microbiology. In this Review, we highlight recent advances in the understanding of human listeriosis and L. monocytogenes biology. We describe unsuspected modes of hijacking host cell biology, ranging from changes in organelle morphology to direct effects on host transcription via a new class of bacterial effectors called nucleomodulins. We then discuss advances in understanding infection in vivo, including the discovery of tissue-specific virulence factors and the 'arms race' among bacteria competing for a niche in the microbiota. Finally, we describe the complexity of bacterial regulation and physiology, incorporating new insights into the mechanisms of action of a series of riboregulators that are critical for efficient metabolic regulation, antibiotic resistance and interspecies competition.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response.

          Intracellular bacterial pathogens, such as Listeria monocytogenes, are detected in the cytosol of host immune cells. Induction of this host response is often dependent on microbial secretion systems and, in L. monocytogenes, is dependent on multidrug efflux pumps (MDRs). Using L. monocytogenes mutants that overexpressed MDRs, we identified cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger the cytosolic host response. Overexpression of the di-adenylate cyclase, dacA (lmo2120), resulted in elevated levels of the host response during infection. c-di-AMP thus represents a putative bacterial secondary signaling molecule that triggers a cytosolic pathway of innate immunity and is predicted to be present in a wide variety of bacteria and archea.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            How bacterial pathogens colonize their hosts and invade deeper tissues.

            Bacterial pathogens have evolved a wide range of strategies to colonize and invade human organs, despite the presence of multiple host defense mechanisms. In this review, we will describe how pathogenic bacteria can adhere and multiply at the surface of host cells, how some bacteria can enter and proliferate inside these cells, and finally how pathogens may cross epithelial or endothelial host barriers and get access to internal tissues, leading to severe diseases in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity

              Microbial pathogenesis studies are typically performed with reference strains, thereby overlooking microbial intra-species virulence heterogeneity. Here we integrated human epidemiological and clinical data with bacterial population genomics to harness the biodiversity of the model foodborne pathogen Listeria monocytogenes and decipher the basis of its neural and placental tropisms. Taking advantage of the clonal structure of this bacterial species, we identify clones epidemiologically associated with either food or human central nervous system (CNS) and maternal-neonatal (MN) listeriosis. The latter are also most prevalent in patients without immunosuppressive comorbidities. Strikingly, CNS and MN clones are hypervirulent in a humanized mouse model of listeriosis. By integrating epidemiological data and comparative genomics, we uncovered multiple novel putative virulence factors and demonstrated experimentally the contribution of the first gene cluster mediating Listeria monocytogenes neural and placental tropisms. This study illustrates the exceptional power of harnessing microbial biodiversity to identify clinically relevant microbial virulence attributes.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Microbiology
                Nat Rev Micro
                Springer Nature
                1740-1526
                1740-1534
                November 27 2017
                November 27 2017
                :
                :
                Article
                10.1038/nrmicro.2017.126
                29176582
                8726df7b-3dbd-4916-b193-854d66631ce9
                © 2017
                History

                Comments

                Comment on this article