4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ATRX promotes maintenance of herpes simplex virus heterochromatin during chromatin stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms by which mammalian cells recognize and epigenetically restrict viral DNA are not well defined. We used herpes simplex virus with bioorthogonally labeled genomes to detect host factors recruited to viral DNA shortly after its nuclear entry and found that the cellular IFI16, PML, and ATRX proteins colocalized with viral DNA by 15 min post infection. HSV-1 infection of ATRX-depleted fibroblasts resulted in elevated viral mRNA and accelerated viral DNA accumulation. Despite the early association of ATRX with vDNA, we found that initial viral heterochromatin formation is ATRX-independent. However, viral heterochromatin stability required ATRX from 4 to 8 hr post infection. Inhibition of transcription blocked viral chromatin loss in ATRX-knockout cells; thus, ATRX is uniquely required for heterochromatin maintenance during chromatin stress. These results argue that the initial formation and the subsequent maintenance of viral heterochromatin are separable mechanisms, a concept that likely extrapolates to host cell chromatin and viral latency.

          eLife digest

          Cells carefully package their DNA, tightly wrapping the long, stringy molecule around spool-like groups of proteins called histones. However, the genes that are draped around histones are effectively silenced, because they are ‘hidden’ from the molecular actors that read the genetic information to create proteins. A cell can control which of its genes are active by using proteins to move histones on or off specific portions of DNA. For example, a protein known as ATRX associates with a partner to load histones onto precise DNA regions and switch them off.

          Wrapping DNA around histones can also be a defense mechanism against viruses, which are tiny cellular parasites that hijack the molecular machinery of a cell to create more of themselves. For instance, the herpes simplex virus, which causes cold sores and genital herpes, injects its DNA into a cell where it is used as a template to create new viral particles. By packaging the DNA of the virus around histones, the cell ensures that this foreign genetic information cannot be used to make more invaders. However, the details of this process remain unknown. In particular, it is still unclear what happens immediately after the virus penetrates the nucleus, the compartment that shelters the DNA of the cell.

          Here, Cabral et al. explored this question by dissecting the role of ATRX in silencing the genetic information of the herpes simplex virus. The viral DNA was labeled while inside the virus itself, and then tracked using microscopy imaging techniques as it made its way into the cell and inside the nucleus. This revealed that, almost immediately after the viral DNA had entered the nucleus, ATRX came in contact with the foreign molecule. One possibility was that ATRX would be responsible for loading certain forms of histones onto the viral DNA. However, after Cabral et al. deleted ATRX from the cell, histones were still present on the genetic information of the virus, but this association was less stable. This indicated that ATRX was only required to keep histones latched onto the viral DNA, but not to load the proteins in the first place.

          Overall, these results show that using histones to silence viral DNA in done in several steps: first, the foreign genetic material needs to be recognized, then histones have to be attached, and finally molecular actors should be recruited to keep histones onto the DNA.

          Knowing how cells ward off the herpes simplex virus could help us find ways to ‘boost’ this defense mechanism. Armed with this knowledge, we could also begin to understand why certain people are more likely to be infected by this virus.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          FACT facilitates transcription-dependent nucleosome alteration.

          The FACT (facilitates chromatin transcription) complex is required for transcript elongation through nucleosomes by RNA polymerase II (Pol II) in vitro. Here, we show that FACT facilitates Pol II-driven transcription by destabilizing nucleosomal structure so that one histone H2A-H2B dimer is removed during enzyme passage. We also demonstrate that FACT possesses intrinsic histone chaperone activity and can deposit core histones onto DNA. Importantly, FACT activity requires both of its constituent subunits and is dependent on the highly acidic C terminus of its larger subunit, Spt16. These findings define the mechanism by which Pol II can transcribe through chromatin without disrupting its epigenetic status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II.

            Biochemical experiments indicate that transcriptional elongation by RNA polymerase II (Pol II) is inhibited by nucleosomes and hence requires chromatin-modifying activities. Here, we examine the fate of histones upon passage of elongating Pol II in vivo. Histone density throughout the entire Saccharomyces cerevisiae GAL10 coding region is inversely correlated with Pol II association and transcriptional activity, suggesting that the elongating Pol II machinery efficiently evicts core histones from the DNA. Furthermore, new histones appear to be deposited onto DNA less than 1 min after passage of Pol II. Transcription-dependent deposition of histones requires the FACT complex that travels with elongating Pol II. Our results suggest that Pol II transcription generates a highly dynamic equilibrium of histone eviction and histone deposition and that there is significant histone exchange throughout most of the yeast genome within a single cell cycle.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Rapid neurogenesis through transcriptional activation in human stem cells

              Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human-induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems-level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                22 November 2018
                2018
                : 7
                : e40228
                Affiliations
                [1 ]deptDepartment of Microbiology, Blavatnik Institute Harvard Medical School BostonUnited States
                [2 ]deptProgram in Virology Harvard Medical School BostonUnited States
                Howard Hughes Medical Institute, Columbia University United States
                Weill Cornell Medicine United States
                Howard Hughes Medical Institute, Columbia University United States
                Author information
                http://orcid.org/0000-0003-4733-6612
                http://orcid.org/0000-0002-1739-0389
                http://orcid.org/0000-0003-1554-6236
                Article
                40228
                10.7554/eLife.40228
                6307862
                30465651
                872e9220-8434-4cfb-b352-1e64a905c367
                © 2018, Cabral et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 19 July 2018
                : 20 November 2018
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: AI106934
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Chromosomes and Gene Expression
                Microbiology and Infectious Disease
                Custom metadata
                Epigenetic restriction of herpes simplex virus occurs in a biphasic manner, in which ATRX maintains viral heterochromatin after an initial phase of chromatin deposition.

                Life sciences
                herpes simplex virus,atrx,epigenetics,viral restriction,heterochromatin,ifi16,other
                Life sciences
                herpes simplex virus, atrx, epigenetics, viral restriction, heterochromatin, ifi16, other

                Comments

                Comment on this article