3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards Real-Time Single-Channel Speech Separation in Noisy and Reverberant Environments

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Real-time single-channel speech separation aims to unmix an audio stream captured from a single microphone that contains multiple people talking at once, environmental noise, and reverberation into multiple de-reverberated and noise-free speech tracks, each track containing only one talker. While large state-of-the-art DNNs can achieve excellent separation from anechoic mixtures of speech, the main challenge is to create compact and causal models that can separate reverberant mixtures at inference time. In this paper, we explore low-complexity, resource-efficient, causal DNN architectures for real-time separation of two or more simultaneous speakers. A cascade of three neural network modules are trained to sequentially perform noise-suppression, separation, and de-reverberation. For comparison, a larger end-to-end model is trained to output two anechoic speech signals directly from noisy reverberant speech mixtures. We propose an efficient single-decoder architecture with subtractive separation for real-time recursive speech separation for two or more speakers. Evaluation on real monophonic recordings of speech mixtures, according to speech separation measures like SI-SDR, perceptual measures like DNS-MOS, and a novel proposed channel separation metric, show that these compact causal models can separate speech mixtures with low latency, and perform on par with large offline state-of-the-art models like SepFormer.

          Related collections

          Author and article information

          Journal
          13 March 2023
          Article
          2303.07569
          873ac358-eea7-449f-9895-a720798d3926

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          to appear in ICASSP 2023
          eess.AS cs.SD

          Graphics & Multimedia design,Electrical engineering
          Graphics & Multimedia design, Electrical engineering

          Comments

          Comment on this article