23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polyamines in Pollen: From Microsporogenesis to Fertilization

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The entire pollen life span is driven by polyamine (PA) homeostasis, achieved through fine regulation of their biosynthesis, oxidation, conjugation, compartmentalization, uptake, and release. The critical role of PAs, from microsporogenesis to pollen–pistil interaction during fertilization, is suggested by high and dynamic transcript levels of PA biosynthetic genes, as well as by the activities of the corresponding enzymes. Moreover, exogenous supply of PAs strongly affects pollen maturation and pollen tube elongation. A reduction of endogenous free PAs impacts pollen viability both in the early stages of pollen development and during fertilization. A number of studies have demonstrated that PAs largely function by modulating transcription, by structuring pollen cell wall, by modulating protein (mainly cytoskeletal) assembly as well as by modulating the level of reactive oxygen species. Both free low-molecular weight aliphatic PAs, and PAs conjugated to proteins and hydroxyl-cinnamic acids take part in these complex processes. Here, we review both historical and recent evidence regarding molecular events underlying the role of PAs during pollen development. In the concluding remarks, the outstanding issues and directions for future research that will further clarify our understanding of PA involvement during pollen life are outlined.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The roles of polyamines during the lifespan of plants: from development to stress.

          Compelling evidence indicates that free polyamines (PAs) (mainly putrescine, spermidine, spermine, and its isomer thermospermine), some PA conjugates to hydroxycinnamic acids, and the products of PA oxidation (hydrogen peroxide and γ-aminobutyric acid) are required for different processes in plant development and participate in abiotic and biotic stress responses. A tight regulation of PA homeostasis is required, since depletion or overaccumulation of PAs can be detrimental for cell viability in many organisms. In plants, homeostasis is achieved by modulation of PA biosynthesis, conjugation, catabolism, and transport. However, recent data indicate that such mechanisms are not mere modulators of PA pools but actively participate in PA functions. Examples are found in the spermidine-dependent eiF5A hypusination required for cell division, PA hydroxycinnamic acid conjugates required for pollen development, and the involvement of thermospermine in cell specification. Recent advances also point to implications of PA transport in stress tolerance, PA-dependent transcriptional and translational modulation of genes and transcripts, and posttranslational modifications of proteins. Overall, the molecular mechanisms identified suggest that PAs are intricately coordinated and/or mediate different stress and developmental pathways during the lifespan of plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polyamines: ubiquitous polycations with unique roles in growth and stress responses.

            Polyamines are small polycationic molecules found ubiquitously in all organisms and function in a wide variety of biological processes. In the past decade, molecular and genetic studies using mutants and transgenic plants with an altered activity of enzymes involved in polyamine biosynthesis have contributed much to a better understanding of the biological functions of polyamines in plants. Spermidine is essential for survival of Arabidopsis embryos. One of the reasons may lie in the fact that spermidine serves as a substrate for the lysine hypusine post-translational modification of the eukaryotic translation initiation factor 5A, which is essential in all eukaryotic cells. Spermine is not essential but plays a role in stress responses, probably through the modulation of cation channel activities, and as a source of hydrogen peroxide during pathogen infection. Thermospermine, an isomer of spermine, is involved in stem elongation, possibly by acting on the regulation of upstream open reading frame-mediated translation. The mechanisms of action of polyamines differ greatly from those of plant hormones. There remain numerous unanswered questions regarding polyamines in plants, such as transport systems and polyamine-responsive genes. Further studies on the action of polyamines will undoubtedly provide a new understanding of plant growth regulation and stress responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species produced by NADPH oxidase are involved in pollen tube growth.

              Tip-localized reactive oxygen species (ROS) were detected in growing pollen tubes by chloromethyl dichlorodihydrofluorescein diacetate oxidation, while tip-localized extracellular superoxide production was detected by nitroblue tetrazolium (NBT) reduction. To investigate the origin of the ROS we cloned a fragment of pollen specific tobacco NADPH oxidase (NOX) closely related to a pollen specific NOX from Arabidopsis. Transfection of tobacco pollen tubes with NOX-specific antisense oligodeoxynucleotides (ODNs) resulted in decreased amount of NtNOX mRNA, lower NOX activity and pollen tube growth inhibition. The ROS scavengers and the NOX inhibitor diphenylene iodonium chloride (DPI) inhibited growth and ROS formation in tobacco pollen tube cultures. Exogenous hydrogen peroxide (H2O2) rescued the growth inhibition caused by NOX antisense ODNs. Exogenous CaCl2 increased NBT reduction at the pollen tube tip, suggesting that Ca2+ increases the activity of pollen NOX in vivo. The results show that tip-localized ROS produced by a NOX enzyme is needed to sustain the normal rate of pollen tube growth and that this is likely to be a general mechanism in the control of tip growth of polarized plant cells.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                18 February 2016
                2016
                : 7
                : 155
                Affiliations
                [1] 1Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università degli Studi di Bologna Bologna, Italia
                [2] 2Dipartimento di Scienze della Vita, Università di Siena Siena, Italia
                Author notes

                Edited by: Patrick H. Masson, University of Wisconsin-Madison, USA

                Reviewed by: Dietmar Funck, University of Konstanz, Germany; Wei Wang, Henan Agricultural University, China

                *Correspondence: Stefano Del Duca, stefano.delduca@ 123456unibo.it

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2016.00155
                4757701
                26925074
                875669cc-076e-4a6c-bb22-10bd583d43b9
                Copyright © 2016 Aloisi, Cai, Serafini-Fracassini and Del Duca.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 December 2015
                : 29 January 2016
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 49, Pages: 7, Words: 0
                Categories
                Plant Science
                Mini Review

                Plant science & Botany
                fertilization,microsporogenesis,polyamines,putrescine,self-incompatibility,spermidine,spermine,transglutaminase

                Comments

                Comment on this article