+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFκB pathways in cholangiocarcinoma cells

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Cholangiocarcinoma (CCA) is the most common biliary tract malignancy in the world with high resistance to current chemotherapies and extremely poor prognosis. The main objective of this study was to investigate the inhibitory effects of cryptotanshinone (CTS), a natural compound isolated from Salvia miltiorrhiza Bunge, on CCA both in vitro and in vivo and to explore the underlying mechanisms of CTS-induced apoptosis and cell cycle arrest.


          The anti-tumor activity of CTS on HCCC-9810 and RBE cells was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and colony forming assays. Cell cycle changes were detected by flow cytometric analysis. Apoptosis was detected by annexin V/propidium iodide double staining and Hoechst 33342 staining assays. The efficacy of CTS in vivo was evaluated using a HCCC-9810 xenograft model in athymic nude mice. The expression of key proteins involved in cell apoptosis and signaling pathway in vitro was analyzed by Western blot analysis.


          CTS induced potent growth inhibition, S-phase arrest, apoptosis, and colony-forming inhibition in HCCC-9810 and RBE cells in a dose-dependent manner. Intraperitoneal injection of CTS (0, 10, or 25 mg/kg) for 4 weeks significantly inhibited the growth of HCCC-9810 xenografts in athymic nude mice. CTS treatment induced S-phase arrest with a decrease of cyclin A1 and an increase of cyclin D1 protein level. Bcl-2 expression was downregulated remarkably, while Bax expression was increased after apoptosis occurred. Additionally, the activation of JAK2/STAT3 and PI3K/Akt/NFκB was significantly inhibited in CTS-treated CCA cells.


          CTS induced CCA cell apoptosis by suppressing both the JAK2/STAT3 and PI3K/Akt/NFκB signaling pathways and altering the expression of Bcl-2/Bax family, which was regulated by these two signaling pathways. CTS may serve as a potential therapeutic agent for CCA.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found


          Cholangiocarcinoma is a devastating malignancy that presents late, is notoriously difficult to diagnose, and is associated with a high mortality. The incidence of intrahepatic cholangiocarcinoma is increasing worldwide. The cause for this rise is unclear, although it could be related to an interplay between predisposing genetic factors and environmental triggers. MRI and CT with endoscopic ultrasound and PET provide useful diagnostic information in certain patients. Surgical resection is the only chance for cure, with results depending on careful technique and patient selection. Data suggest that liver transplantation could offer long-term survival in selected patients when combined with neoadjuvant chemoradiotherapy. Chemotherapy and radiotherapy have been ineffective for patients with inoperable tumours. For most of these patients biliary drainage is the mainstay of palliation. However, controversy exists over the type and positioning of biliary stents. Photodynamic treatment is a new palliative technique that might improve quality of life.
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple levels of cyclin specificity in cell-cycle control.

            Cyclins regulate the cell cycle by binding to and activating cyclin-dependent kinases (Cdks). Phosphorylation of specific targets by cyclin-Cdk complexes sets in motion different processes that drive the cell cycle in a timely manner. In budding yeast, a single Cdk is activated by multiple cyclins. The ability of these cyclins to target specific proteins and to initiate different cell-cycle events might, in some cases, reflect the timing of the expression of the cyclins; in others, it might reflect intrinsic properties of the cyclins that render them better suited to target particular proteins.
              • Record: found
              • Abstract: found
              • Article: not found

              Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein.

              In our previous study we showed that insulin-like growth factor-I induces a cAMP-response element (CRE) site-containing Bcl-2 promoter through a novel signaling pathway involving mitogen-activated protein kinase kinase 6/p38beta mitogen-activated protein kinase/MAP kinase-activated protein kinase-3/cAMP-response element-binding protein (CREB) (Pugazhenthi, S., Miller, E., Sable, C., Young, P., Heidenreich, K. A., Boxer, L. M., and Reusch, J. E.-B. (1999) J. Biol. Chem. 274, 27529-27535). In the present investigation, we define a second pathway contributing to CREB-dependent up-regulation of Bcl-2 expression as a novel anti-apoptotic function of Akt signaling. To examine the role of Akt on Bcl-2 expression, a series of transient transfections using a luciferase reporter gene driven by the promoter region of Bcl-2 containing a CRE were carried out. Pharmacological inhibition of phosphatidylinositol (PI) 3-kinase, the upstream kinase of Akt, with LY294002 led to a 45% decrease in Bcl-2 promoter activity. The reporter activity was enhanced 2.3-fold by overexpression of active p110 subunit of PI 3-kinase and inhibited 44% by the dominant negative p85 subunit of PI 3-kinase. Cotransfection with 3-phosphoinositide-dependent kinase (PDK1), which is required for the full activation of Akt, resulted in enhanced luciferase activity. Insulin-like growth factor-I-mediated induction of Bcl-2 promoter activity was decreased significantly (p < 0.01) by the dominant negative forms of p85 subunit of PI 3-kinase, PDK1, and Akt. These data indicate that regulation of Bcl-2 expression by IGF-I involves a signaling cascade mediated by PI 3-kinase/PDK1/Akt/CREB. Furthermore, we measured the Bcl-2 mRNA in PC12 cells overexpressing Akt by real-time quantitative reverse transcription-polymerase chain reaction using the TaqMan(TM) fluorogenic probe system. We observed a 2.1-fold increase in Bcl-2 mRNA levels in the Akt cell line compared with control PC12 cells, supporting the observation that enhanced CREB activity by Akt signaling leads to increased Bcl-2 promoter activity and cell survival.

                Author and article information

                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                15 June 2017
                : 11
                : 1753-1766
                [1 ]Department of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
                [2 ]Institute of Biliary Disease Research, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Wei Gong, Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Shanghai 200092, People’s Republic of China, Tel +86 136 5181 9806, Email 13651819806@ 123456163.com

                These authors contributed equally to this work

                © 2017 Ke et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research


                Comment on this article