5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Buprenorphine Analgesia Leads to Coagulopathy and Increased Plasma Fibrinogen in Healthy Rats : Implications For Small Animal Research

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d5192097e63">Buprenorphine is the recommended analgesic for post-surgical pain and associated stress in small animal research. Our aim was to examine the effect of isoflurane anesthesia and buprenorphine analgesia on blood coagulation in the rat using rotational thromboelastometry. </p>

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Fibrinogen and fibrin.

          Fibrinogen is a large, complex, fibrous glycoprotein with three pairs of polypeptide chains linked together by 29 disulfide bonds. It is 45 nm in length, with globular domains at each end and in the middle connected by alpha-helical coiled-coil rods. Both strongly and weakly bound calcium ions are important for maintenance of fibrinogen's structure and functions. The fibrinopeptides, which are in the central region, are cleaved by thrombin to convert soluble fibrinogen to insoluble fibrin polymer, via intermolecular interactions of the "knobs" exposed by fibrinopeptide removal with "holes" always exposed at the ends of the molecules. Fibrin monomers polymerize via these specific and tightly controlled binding interactions to make half-staggered oligomers that lengthen into protofibrils. The protofibrils aggregate laterally to make fibers, which then branch to yield a three-dimensional network-the fibrin clot-essential for hemostasis. X-ray crystallographic structures of portions of fibrinogen have provided some details on how these interactions occur. Finally, the transglutaminase, Factor XIIIa, covalently binds specific glutamine residues in one fibrin molecule to lysine residues in another via isopeptide bonds, stabilizing the clot against mechanical, chemical, and proteolytic insults. The gene regulation of fibrinogen synthesis and its assembly into multichain complexes proceed via a series of well-defined steps. Alternate splicing of two of the chains yields common variant molecular isoforms. The mechanical properties of clots, which can be quite variable, are essential to fibrin's functions in hemostasis and wound healing. The fibrinolytic system, with the zymogen plasminogen binding to fibrin together with tissue-type plasminogen activator to promote activation to the active enzyme plasmin, results in digestion of fibrin at specific lysine residues. Fibrin(ogen) also specifically binds a variety of other proteins, including fibronectin, albumin, thrombospondin, von Willebrand factor, fibulin, fibroblast growth factor-2, vascular endothelial growth factor, and interleukin-1. Studies of naturally occurring dysfibrinogenemias and variant molecules have increased our understanding of fibrinogen's functions. Fibrinogen binds to activated alphaIIbbeta3 integrin on the platelet surface, forming bridges responsible for platelet aggregation in hemostasis, and also has important adhesive and inflammatory functions through specific interactions with other cells. Fibrinogen-like domains originated early in evolution, and it is likely that their specific and tightly controlled intermolecular interactions are involved in other aspects of cellular function and developmental biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Current knowledge of buprenorphine and its unique pharmacological profile.

            Despite the increasing clinical use of transdermal buprenorphine, questions have persisted about the possibility of a ceiling effect for analgesia, its combination with other μ-opioid agonists, and the reversibility of side effects. In October 2008, a consensus group of experts met to review recent research into the pharmacology and clinical use of buprenorphine. The objective was to achieve consensus on the conclusions to be drawn from this work. It was agreed that buprenorphine clearly behaves as a full μ-opioid agonist for analgesia in clinical practice, with no ceiling effect, but that there is a ceiling effect for respiratory depression, reducing the likelihood of this potentially fatal adverse event. This is entirely consistent with receptor theory. In addition, the effects of buprenorphine can be completely reversed by naloxone. No problems are encountered when switching to and from buprenorphine and other opioids, or in combining them. Buprenorphine exhibits a pronounced antihyperalgesic effect that might indicate potential advantages in the treatment of neuropathic pain. Other beneficial properties are the compound's favorable safety profile, particularly in elderly patients and those with renal impairment, and its lack of effect on sex hormones and the immune system. The expert group agreed that these properties, as well as proven efficacy in severe pain and favorable tolerability, mean that buprenorphine can be considered a safe and effective option for treating chronic cancer and noncancer pain. © 2010 World Institute of Pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fibrinogen gene regulation.

              The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression.
                Bookmark

                Author and article information

                Journal
                SHOCK
                SHOCK
                Ovid Technologies (Wolters Kluwer Health)
                1073-2322
                2017
                July 2017
                : 48
                : 1
                : 78-84
                Article
                10.1097/SHK.0000000000000821
                27984521
                875ac900-984f-4db7-8f50-f813c3133757
                © 2017
                History

                Comments

                Comment on this article