47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CD4 T Cell-Derived IFN-γ Plays a Minimal Role in Control of Pulmonary Mycobacterium tuberculosis Infection and Must Be Actively Repressed by PD-1 to Prevent Lethal Disease

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          IFN-γ–producing CD4 T cells are required for protection against Mycobacterium tuberculosis (Mtb) infection, but the extent to which IFN-γ contributes to overall CD4 T cell-mediated protection remains unclear. Furthermore, it is not known if increasing IFN-γ production by CD4 T cells is desirable in Mtb infection. Here we show that IFN-γ accounts for only ~30% of CD4 T cell-dependent cumulative bacterial control in the lungs over the first six weeks of infection, but >80% of control in the spleen. Moreover, increasing the IFN-γ–producing capacity of CD4 T cells by ~2 fold exacerbates lung infection and leads to the early death of the host, despite enhancing control in the spleen. In addition, we show that the inhibitory receptor PD-1 facilitates host resistance to Mtb by preventing the detrimental over-production of IFN-γ by CD4 T cells. Specifically, PD-1 suppressed the parenchymal accumulation of and pathogenic IFN-γ production by the CXCR3 +KLRG1 -CX3CR1 - subset of lung-homing CD4 T cells that otherwise mediates control of Mtb infection. Therefore, the primary role for T cell-derived IFN-γ in Mtb infection is at extra-pulmonary sites, and the host-protective subset of CD4 T cells requires negative regulation of IFN-γ production by PD-1 to prevent lethal immune-mediated pathology.

          Author Summary

          The development of novel tuberculosis vaccines has been hindered by the poor understanding of the mechanisms of host-protection. It has been long-held that IFN-γ is the principle effector of CD4 T cell-mediated resistance to Mtb infection, but Mtb-specific CD4 T cells produce low amounts of IFN-γ in vivo, leading to the possibility that increasing IFN-γ production by Th1 cells might enhance control of Mtb infection. However, the precise contribution of IFN-γ to CD4 T cell-dependent protection and the outcome of increasing IFN-γ production by CD4 T cells have not been evaluated. Here we show that IFN-γ accounts for only ~30% of the cumulative CD4 T cell-mediated reduction in lung bacterial loads over the first 1.5 months of infection. Moreover, we find that increasing the per capita production of IFN-γ by CD4 T cells leads to the early death of the host. Lastly, we show that suppression of CD4 T cell-derived IFN-γ by the inhibitory receptor PD-1 is essential to prevent lethal disease. Therefore, poor control Mtb infection does not result from defective production of IFN-γ, and strategies to selectively boost it are unwarranted. Furthermore, identifying the primary mechanisms of CD4 T cell-dependent control of Mtb infection should be a priority.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice.

          Understanding the immunological mechanisms of protection and pathogenesis in tuberculosis remains problematic. We have examined the extent to which tumor necrosis factor-alpha (TNF alpha) contributes to this disease using murine models in which the action of TNF alpha is inhibited. TNF alpha was neutralized in vivo by monoclonal antibody; in addition, a mouse strain with a disruption in the gene for the 55 kDa TNF receptor was used. The data from both models established that TNF alpha and the 55 kDa TNF receptor are essential for protection against tuberculosis in mice, and for reactive nitrogen production by macrophages early in infection. Granulomas were formed in equal numbers in control and experimental mice, but necrosis was observed only in mice deficient in TNF alpha or TNF receptor. TNF alpha and the 55 kDa TNF receptor are necessary conditions for protection against murine M. tuberculosis infection, but are not solely responsible for the tissue damage observed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β.

            Interleukin 1 (IL-1) is an important mediator of innate immunity but can also promote inflammatory tissue damage. During chronic infections such as tuberculosis, the beneficial antimicrobial role of IL-1 must be balanced with the need to prevent immunopathology. By exogenously controlling the replication of Mycobacterium tuberculosis in vivo, we obviated the requirement for antimicrobial immunity and discovered that both IL-1 production and infection-induced immunopathology were suppressed by lymphocyte-derived interferon-γ (IFN-γ). This effect was mediated by nitric oxide (NO), which we found specifically inhibited assembly of the NLRP3 inflammasome via thiol nitrosylation. Our data indicate that the NO produced as a result of adaptive immunity is indispensable in modulating the destructive innate inflammatory responses elicited during persistent infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections.

              Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                31 May 2016
                May 2016
                : 12
                : 5
                : e1005667
                Affiliations
                [1 ]T lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
                [2 ]Department of Microbiology and Immunobiology, and Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
                [3 ]Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
                [4 ]Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
                Harvard School of Public Health, UNITED STATES
                Author notes

                I have read the journal's policy and the authors of this manuscript have the following competing interests: DLB and AHS have patents related to PD-1. This does not alter our adherence to all PLOS Pathogens policies on sharing data and materials.

                Conceived and designed the experiments: SS DLB VVG. Performed the experiments: SS KDK MAS. Analyzed the data: SS DLB VVG. Contributed reagents/materials/analysis tools: AHS HAY. Wrote the paper: SS DLB VVG.

                Article
                PPATHOGENS-D-16-00690
                10.1371/journal.ppat.1005667
                4887085
                27244558
                8769af8d-5ee3-45f1-8a9b-eded15fe4d1c

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 28 March 2016
                : 10 May 2016
                Page count
                Figures: 6, Tables: 0, Pages: 22
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100006492, Division of Intramural Research, National Institute of Allergy and Infectious Diseases;
                Award Recipient :
                Funded by: the Kyoto University Foundation fellowship
                Award Recipient :
                Funded by: the NIH-JSPS intramural fellowship
                Award Recipient :
                Funded by: the American Heart Foundation grant
                Award Recipient :
                This work was supported by the Intramural Research Program of NIAID, NIH awarded to DLB, the American Heart Foundation grant to VVG, the Kyoto University Foundation fellowship and the NIH-JSPS intramural fellowship to SS. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Helper Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Helper Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Helper Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Helper Cells
                Biology and Life Sciences
                Organisms
                Bacteria
                Actinobacteria
                Mycobacterium Tuberculosis
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Spleen
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Spleen
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Tuberculosis
                Medicine and Health Sciences
                Tropical Diseases
                Tuberculosis
                Medicine and Health Sciences
                Infectious Diseases
                Infectious Disease Control
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Research and Analysis Methods
                Specimen Preparation and Treatment
                Staining
                Cell Staining
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article