11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Scaling of work and energy use in social insect colonies

      ,
      Behavioral Ecology and Sociobiology
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references141

          • Record: found
          • Abstract: found
          • Book: not found

          The Ants

          From the Arctic to South Africa - one finds them everywhere: Ants. Making up nearly 15% of the entire terrestrial animal biomass, ants are impressive not only in quantitative terms, they also fascinate by their highly organized and complex social system. Their caste system, the division of labor, the origin of altruistic behavior and the complex forms of chemical communication makes them the most interesting group of social organisms and the main subject for sociobiologists. Not least is their ecological importance: Ants are the premier soil turners, channelers of energy and dominatrices of the insect fauna. TOC:The importance of ants.- Classification and origins.- The colony life cycle.- Altruism and the origin of the worker caste.- Colony odor and kin recognition.- Queen numbers and domination.- Communication.- Caste and division of labor.- Social homeostasis and flexibility.- Foraging and territorial strategies.- The organization of species communities.- Symbioses among ant species.- Symbioses with other animals.- Interaction with plants.- The specialized predators.- The army ants.- The fungus growers.- The harvesters.- The weaver ants.- Collecting and culturing ants.- Glossary.- Bibliography.- Index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A general model for ontogenetic growth.

            Several equations have been proposed to describe ontogenetic growth trajectories for organisms justified primarily on the goodness of fit rather than on any biological mechanism. Here, we derive a general quantitative model based on fundamental principles for the allocation of metabolic energy between maintenance of existing tissue and the production of new biomass. We thus predict the parameters governing growth curves from basic cellular properties and derive a single parameterless universal curve that describes the growth of many diverse species. The model provides the basis for deriving allometric relationships for growth rates and the timing of life history events.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A general model for the structure and allometry of plant vascular systems

                Bookmark

                Author and article information

                Journal
                Behavioral Ecology and Sociobiology
                Behav Ecol Sociobiol
                Springer Nature
                0340-5443
                1432-0762
                July 2016
                March 28 2016
                : 70
                : 7
                : 1047-1061
                Article
                10.1007/s00265-016-2097-z
                87867cd6-a5a0-4a3d-b4e1-c5033f2be666
                © 2016

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article