14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Feasibility of Lithium Storage on Graphene and Its Derivatives

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanomaterials are anticipated to be promising storage media, owing to their high surface-to-mass ratio. The high hydrogen capacity achieved by using graphene has reinforced this opinion and motivated investigations of the possibility to use it to store another important energy carrier - lithium (Li). While the first-principles computations show that the Li capacity of pristine graphene, limited by Li clustering and phase separation, is lower than that offered by Li intercalation in graphite, we explore the feasibility of modifying graphene for better Li storage. It is found that certain structural defects in graphene can bind Li stably, yet more efficacious approach is through substitution doping with boron (B). In particular, the layered C3B compound stands out as a promising Li storage medium. The monolayer C3B has a capacity of 714 mAh/g (as Li1.25C3B), and the capacity of stacked C3B is 857 mAh/g (as Li1.5C3B), which is about twice as large as graphite's 372 mAh/g (as LiC6). Our results help clarify the mechanism of Li storage in low-dimensional materials, and shed light on the rational design of nano-architectures for energy storage.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries.

          The lithium storage properties of graphene nanosheet (GNS) materials as high capacity anode materials for rechargeable lithium secondary batteries (LIB) were investigated. Graphite is a practical anode material used for LIB, because of its capability for reversible lithium ion intercalation in the layered crystals, and the structural similarities of GNS to graphite may provide another type of intercalation anode compound. While the accommodation of lithium in these layered compounds is influenced by the layer spacing between the graphene nanosheets, control of the intergraphene sheet distance through interacting molecules such as carbon nanotubes (CNT) or fullerenes (C60) might be crucial for enhancement of the storage capacity. The specific capacity of GNS was found to be 540 mAh/g, which is much larger than that of graphite, and this was increased up to 730 mAh/g and 784 mAh/g, respectively, by the incorporation of macromolecules of CNT and C60 to the GNS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Graphene anchored with co(3)o(4) nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance.

            We report a facile strategy to synthesize the nanocomposite of Co(3)O(4) nanoparticles anchored on conducting graphene as an advanced anode material for high-performance lithium-ion batteries. The Co(3)O(4) nanoparticles obtained are 10-30 nm in size and homogeneously anchor on graphene sheets as spacers to keep the neighboring sheets separated. This Co(3)O(4)/graphene nanocomposite displays superior Li-battery performance with large reversible capacity, excellent cyclic performance, and good rate capability, highlighting the importance of the anchoring of nanoparticles on graphene sheets for maximum utilization of electrochemically active Co(3)O(4) nanoparticles and graphene for energy storage applications in high-performance lithium-ion batteries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure.

              To fabricate nanoporous electrode materials with delaminated structure, the graphene nanosheets (GNS) in the ethylene glycol solution were reassembled in the presence of rutile SnO(2) nanoparticles. According to the TEM analysis, the graphene nanosheets are homogeneously distributed between the loosely packed SnO(2) nanoparticles in such a way that the nanoporous structure with a large amount of void spaces could be prepared. The obtained SnO(2)/GNS exhibits a reversible capacity of 810 mAh/g; furthermore, its cycling performance is drastically enhanced in comparison with that of the bare SnO(2) nanoparticle. After 30 cycles, the charge capacity of SnO(2)/GNS still remained 570 mAh/g, that is, about 70% retention of the reversible capacity, while the specific capacity of the bare SnO(2) nanoparticle on the first charge was 550 mAh/g, dropping rapidly to 60 mAh/g only after 15 cycles. The dimensional confinement of tin oxide nanoparticles by the surrounding GNS limits the volume expansion upon lithium insertion, and the developed pores between SnO(2) and GNS could be used as buffered spaces during charge/discharge, resulting in the superior cyclic performances.
                Bookmark

                Author and article information

                Journal
                22 November 2013
                Article
                10.1021/jz400491b
                1311.5910
                8791213d-acfe-4af6-b694-07647931284e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                J. Phys. Chem. Lett, 2013, 4, 1737
                cond-mat.mtrl-sci

                Condensed matter
                Condensed matter

                Comments

                Comment on this article