10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Frontal fibrosing alopecia: An update on the hypothesis of pathogenesis and treatment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Frontal fibrosing alopecia (FFA) is a relatively new scarring alopecia that is considered a variant of lichen planopilaris (LPP) with no recognized promising treatments. In this study, we tried to clarify the underlying signaling pathways and their roles in the pathogenesis and progression of FFA. Because of several differences in clinical manifestations, response to treatments, and pathological findings, these two conditions could be differentiated from each other. Taking into account the already discussed signaling pathways and involved players such as T cells, mast cells, and sebaceous glands, different possible therapeutic options could be suggested. In addition to treatments supported by clinical evidence, such as 5 alpha-reductase inhibitors, topical calcineurin inhibitors, hydroxychloroquine, peroxisome proliferator-activated receptor gamma agonists, and oral retinoid agents, various other treatment strategies and drugs, such as phototherapy, Janus kinase inhibitors, dehydroepiandrosterone, sirolimus, cetirizine, and rituximab, could be suggested to mitigate disease progression. Of course, such lines of treatment need further evaluation in clinical trials.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis

          Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (p<0.05) and chemokines CCL2, CXCL10 and CXCL13 (p<0.05). No overall changes were observed in synovial inflammation score or the presence of T cells, B cells or macrophages. Changes in synovial phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3 strongly correlated with 4-month clinical responses (p<0.002). Tofacitinib significantly decreased plasma CXCL10 (p<0.005) at Day 28 compared with placebo. Conclusions Tofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frontal fibrosing alopecia: a multicenter review of 355 patients.

            To our knowledge, there are no large multicenter studies concerning frontal fibrosing alopecia (FFA) that could give clues about its pathogenesis and best treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis.

              Pulmonary fibrosis is a progressive life-threatening disease for which no effective therapy exists. Myofibroblasts are one of the key effector cells in pulmonary fibrosis and are the primary source of extracellular matrix production. Drugs that inhibit the differentiation of fibroblasts to myofibroblasts have potential as antifibrotic therapies. Peroxisome proliferator-activated receptor (PPAR)-gamma is a transcription factor that upon ligation with PPARgamma agonists activates target genes containing PPAR response elements. PPARgamma agonists have anti-inflammatory activities and may have potential as antifibrotic agents. In this study, we examined the abilities of PPARgamma agonists to block two of the most important profibrotic activities of TGF-beta on pulmonary fibroblasts: myofibroblast differentiation and production of excess collagen. Both natural (15d-PGJ2) and synthetic (ciglitazone and rosiglitazone) PPARgamma agonists inhibited TGF-beta-driven myofibroblast differentiation, as determined by alpha-smooth muscle actin-specific immunocytochemistry and Western blot analysis. PPARgamma agonists also potently attenuated TGF-beta-driven type I collagen protein production. A dominant-negative PPARgamma partially reversed the inhibition of myofibroblast differentiation by 15d-PGJ2 and rosiglitazone, but the irreversible PPARgamma antagonist GW-9662 did not, suggesting that the antifibrotic effects of the PPARgamma agonists are mediated through both PPARgamma-dependent and independent mechanisms. Thus PPARgamma agonists have novel and potent antifibrotic effects in human lung fibroblasts and may have potential for therapy of fibrotic diseases in the lung and other tissues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Int J Womens Dermatol
                Int J Womens Dermatol
                International Journal of Women's Dermatology
                Elsevier
                2352-6475
                23 January 2019
                June 2019
                23 January 2019
                : 5
                : 2
                : 116-123
                Affiliations
                Autoimmune Bullous Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
                Author notes
                [* ]Corresponding Author. hr_mahmoody@ 123456yahoo.com
                [1]

                Co-first authors.

                Article
                S2352-6475(18)30070-4
                10.1016/j.ijwd.2018.11.003
                6451751
                30997385
                87971c11-ca7f-4c9b-8b9f-85663850c21a
                © 2018 Published by Elsevier Inc. on behalf of Women's Dermatologic Society.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 9 June 2018
                : 12 October 2018
                : 7 November 2018
                Categories
                Article

                autoimmunity,scarring alopecia,frontal fibrosing alopecia,lichen planopilaris,immune response,treatment

                Comments

                Comment on this article