39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria.

      1 , 2
      Science (New York, N.Y.)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spatial structure of natural habitats strongly affects bacterial life, ranging from nanoscale structural features that individual cells exploit for surface attachment, to micro- and millimeter-scale chemical gradients that drive population-level processes. Nanofabrication and microfluidics are ideally suited to manipulate the environment at those scales and have emerged as powerful tools with which to study bacteria. Here, we review the new scientific insights gained by using a diverse set of nanofabrication and microfluidic techniques to study individual bacteria and multispecies communities. This toolbox is beginning to elucidate disparate bacterial phenomena-including aging, electron transport, and quorum sensing-and enables the dissection of environmental communities through single-cell genomics. A more intimate integration of microfluidics, nanofabrication, and microbiology will enable further exploration of bacterial life at the smallest scales.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial persistence as a phenotypic switch.

          A fraction of a genetically homogeneous microbial population may survive exposure to stress such as antibiotic treatment. Unlike resistant mutants, cells regrown from such persistent bacteria remain sensitive to the antibiotic. We investigated the persistence of single cells of Escherichia coli with the use of microfluidic devices. Persistence was linked to preexisting heterogeneity in bacterial populations because phenotypic switching occurred between normally growing cells and persister cells having reduced growth rates. Quantitative measurements led to a simple mathematical description of the persistence switch. Inherent heterogeneity of bacterial populations may be important in adaptation to fluctuating environments and in the persistence of bacterial infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Extracellular electron transfer via microbial nanowires.

            Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Robust growth of Escherichia coli.

              The quantitative study of the cell growth has led to many fundamental insights in our understanding of a wide range of subjects, from the cell cycle to senescence. Of particular importance is the growth rate, whose constancy represents a physiological steady state of an organism. Recent studies, however, suggest that the rate of elongation during exponential growth of bacterial cells decreases cumulatively with replicative age for both asymmetrically and symmetrically dividing organisms, implying that a "steady-state" population consists of individual cells that are never in a steady state of growth. To resolve this seeming paradoxical observation, we studied the long-term growth and division patterns of Escherichia coli cells by employing a microfluidic device designed to follow steady-state growth and division of a large number of cells at a defined reproductive age. Our analysis of approximately 10(5) individual cells reveals a remarkable stability of growth whereby the mother cell inherits the same pole for hundreds of generations. We further show that death of E. coli is not purely stochastic but is the result of accumulating damages. We conclude that E. coli, unlike all other aging model systems studied to date, has a robust mechanism of growth that is decoupled from cell death. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science (New York, N.Y.)
                1095-9203
                0036-8075
                Oct 24 2014
                : 346
                : 6208
                Affiliations
                [1 ] Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
                [2 ] Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands. c.dekker@tudelft.nl.
                Article
                346/6208/1251821
                10.1126/science.1251821
                25342809
                879c7203-dc86-4755-87fc-f7b1a6b6aa7c
                Copyright © 2014, American Association for the Advancement of Science.
                History

                Comments

                Comment on this article