+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SARS-CoV-2 Pandemic: A Comparison Between the Epidemiological Situation in Greece and Romania

      1 , , 1
      infectious diseases, balkan peninsula, virology, epidemiology, sars-cov-2

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Since the onset of the SARS-CoV-2 pandemic, there seems to be scarce data targeting the comparison of epidemiological data among different countries. In an attempt to reveal and characterize the epidemiological profile in the Balkan peninsula, a cross-sectional study has been conducted, aiming to retrospectively collect all the existing information regarding the SARS-CoV-2 pandemic over a period of three years, starting from March 2020 until March 2023. The comparative analysis of the epidemiological features and the main indicators between Romania and Greece can generate a good overview of the factors that can influence public health and create an adequate system of measures to limit the COVID-19 pandemic in the area. A retrospective comparative study aiming to detect and associate the main indicators determining the evolution of the SARS-CoV-2 pandemic data with the control measures adopted in Romania and Greece was performed.


          Publicly available data were obtained from official sources such as the World Health Organization, the European Centre for Disease Control, the Romanian and Greek Ministries of Health, and the Romanian National Centre for Surveillance and Control of Communicable Diseases. The reported number of cases, in total and in conjunction with the age distribution, total number of deaths, and vaccination coverage, from the onset of the pandemic in March 2020 until March 2023, were collected. All officially reported cases of COVID-19 were included in this analysis. Reports with missing or incomplete values regarding the timeframe, age distribution, and vaccination status were excluded.


          During the timeframe of the study, from March 2020 until March 2023, Greece reported a higher number of confirmed SARS-CoV-2 cases as compared to Romania (5,910,103 cases and 3,352,356 cases, respectively). Still, in terms of the overall death toll, Romania recorded a higher mortality rate than Greece during the pandemic (67.773 deaths  vs. 36.372 deaths).

          Concerning both cumulative incidence rates and the 14-day case notification rate per 100.000 inhabitants, it is evident that Romania exhibited greater numbers throughout the course of the pandemic. Although it is not clearly stated, the compulsory vaccination of elderly people that was set as a high priority in Greece may have contributed to the above results.

          In terms of the 14-day death notification rate per 100.000 inhabitants in 2020 and 2021, Romania showed a higher rate than Greece, while Greece reported a greater rate in 2022 and up until March 2023.

          Between 2020 and 2023, Greece presented both a higher number of vaccinated individuals and a higher vaccination coverage with two doses (7,034,695 individuals, 70% of the general population), as compared to Romania (6,467,804 individuals, 33.68% of the general population, p<0.0001).


          Despite the similar restrictions and preventive actions adopted by Romania and Greece, some of the epidemiological data between the two countries tends to differ. It must not be ignored that every nation should be considered a unique entity with distinct features, including individuals, customs, and policies, rather than being categorized with other countries based on geographic proximity or regionalization.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          A novel coronavirus outbreak of global health concern

          In December, 2019, Wuhan, Hubei province, China, became the centre of an outbreak of pneumonia of unknown cause, which raised intense attention not only within China but internationally. Chinese health authorities did an immediate investigation to characterise and control the disease, including isolation of people suspected to have the disease, close monitoring of contacts, epidemiological and clinical data collection from patients, and development of diagnostic and treatment procedures. By Jan 7, 2020, Chinese scientists had isolated a novel coronavirus (CoV) from patients in Wuhan. The genetic sequence of the 2019 novel coronavirus (2019-nCoV) enabled the rapid development of point-of-care real-time RT-PCR diagnostic tests specific for 2019-nCoV (based on full genome sequence data on the Global Initiative on Sharing All Influenza Data [GISAID] platform). Cases of 2019-nCoV are no longer limited to Wuhan. Nine exported cases of 2019-nCoV infection have been reported in Thailand, Japan, Korea, the USA, Vietnam, and Singapore to date, and further dissemination through air travel is likely.1, 2, 3, 4, 5 As of Jan 23, 2020, confirmed cases were consecutively reported in 32 provinces, municipalities, and special administrative regions in China, including Hong Kong, Macau, and Taiwan. 3 These cases detected outside Wuhan, together with the detection of infection in at least one household cluster—reported by Jasper Fuk-Woo Chan and colleagues 6 in The Lancet—and the recently documented infections in health-care workers caring for patients with 2019-nCoV indicate human-to-human transmission and thus the risk of much wider spread of the disease. As of Jan 23, 2020, a total of 835 cases with laboratory-confirmed 2019-nCoV infection have been detected in China, of whom 25 have died and 93% remain in hospital (figure ). 3 Figure Timeline of early stages of 2019-nCoV outbreak 2019-nCoV=2019 novel coronavirus. In The Lancet, Chaolin Huang and colleagues 7 report clinical features of the first 41 patients admitted to the designated hospital in Wuhan who were confirmed to be infected with 2019-nCoV by Jan 2, 2020. The study findings provide first-hand data about severity of the emerging 2019-nCoV infection. Symptoms resulting from 2019-nCoV infection at the prodromal phase, including fever, dry cough, and malaise, are non-specific. Unlike human coronavirus infections, upper respiratory symptoms are notably infrequent. Intestinal presentations observed with SARS also appear to be uncommon, although two of six cases reported by Chan and colleagues had diarrhoea. 6 Common laboratory findings on admission to hospital include lymphopenia and bilateral ground-glass opacity or consolidation in chest CT scans. These clinical presentations confounded early detection of infected cases, especially against a background of ongoing influenza and circulation of other respiratory viruses. Exposure history to the Huanan Seafood Wholesale market served as an important clue at the early stage, yet its value has decreased as more secondary and tertiary cases have appeared. Of the 41 patients in this cohort, 22 (55%) developed severe dyspnoea and 13 (32%) required admission to an intensive care unit, and six died. 7 Hence, the case-fatality proportion in this cohort is approximately 14·6%, and the overall case fatality proportion appears to be closer to 3% (table ). However, both of these estimates should be treated with great caution because not all patients have concluded their illness (ie, recovered or died) and the true number of infections and full disease spectrum are unknown. Importantly, in emerging viral infection outbreaks the case-fatality ratio is often overestimated in the early stages because case detection is highly biased towards the more severe cases. As further data on the spectrum of mild or asymptomatic infection becomes available, one case of which was documented by Chan and colleagues, 6 the case-fatality ratio is likely to decrease. Nevertheless, the 1918 influenza pandemic is estimated to have had a case-fatality ratio of less than 5% 13 but had an enormous impact due to widespread transmission, so there is no room for complacency. Table Characteristics of patients who have been infected with 2019-nCoV, MERS-CoV, and SARS-CoV7, 8, 10, 11, 12 2019-nCoV * MERS-CoV SARS-CoV Demographic Date December, 2019 June, 2012 November, 2002 Location of first detection Wuhan, China Jeddah, Saudi Arabia Guangdong, China Age, years (range) 49 (21–76) 56 (14–94) 39·9 (1–91) Male:female sex ratio 2·7:1 3·3:1 1:1·25 Confirmed cases 835† 2494 8096 Mortality 25† (2·9%) 858 (37%) 744 (10%) Health-care workers 16‡ 9·8% 23·1% Symptoms Fever 40 (98%) 98% 99–100% Dry cough 31 (76%) 47% 29–75% Dyspnoea 22 (55%) 72% 40–42% Diarrhoea 1 (3%) 26% 20–25% Sore throat 0 21% 13–25% Ventilatory support 9·8% 80% 14–20% Data are n, age (range), or n (%) unless otherwise stated. 2019-nCoV=2019 novel coronavirus. MERS-CoV=Middle East respiratory syndrome coronavirus. SARS-CoV=severe acute respiratory syndrome coronavirus. * Demographics and symptoms for 2019-nCoV infection are based on data from the first 41 patients reported by Chaolin Huang and colleagues (admitted before Jan 2, 2020). 8 Case numbers and mortalities are updated up to Jan 21, 2020) as disclosed by the Chinese Health Commission. † Data as of Jan 23, 2020. ‡ Data as of Jan 21, 2020. 9 As an RNA virus, 2019-nCoV still has the inherent feature of a high mutation rate, although like other coronaviruses the mutation rate might be somewhat lower than other RNA viruses because of its genome-encoded exonuclease. This aspect provides the possibility for this newly introduced zoonotic viral pathogen to adapt to become more efficiently transmitted from person to person and possibly become more virulent. Two previous coronavirus outbreaks had been reported in the 21st century. The clinical features of 2019-nCoV, in comparison with SARS-CoV and Middle East respiratory syndrome (MERS)-CoV, are summarised in the table. The ongoing 2019-nCoV outbreak has undoubtedly caused the memories of the SARS-CoV outbreak starting 17 years ago to resurface in many people. In November, 2002, clusters of pneumonia of unknown cause were reported in Guangdong province, China, now known as the SARS-CoV outbreak. The number of cases of SARS increased substantially in the next year in China and later spread globally, 14 infecting at least 8096 people and causing 774 deaths. 12 The international spread of SARS-CoV in 2003 was attributed to its strong transmission ability under specific circumstances and the insufficient preparedness and implementation of infection control practices. Chinese public health and scientific capabilities have been greatly transformed since 2003. An efficient system is ready for monitoring and responding to infectious disease outbreaks and the 2019-nCoV pneumonia has been quickly added to the Notifiable Communicable Disease List and given the highest priority by Chinese health authorities. The increasing number of cases and widening geographical spread of the disease raise grave concerns about the future trajectory of the outbreak, especially with the Chinese Lunar New Year quickly approaching. Under normal circumstances, an estimated 3 billion trips would be made in the Spring Festival travel rush this year, with 15 million trips happening in Wuhan. The virus might further spread to other places during this festival period and cause epidemics, especially if it has acquired the ability to efficiently transmit from person to person. Consequently, the 2019-nCoV outbreak has led to implementation of extraordinary public health measures to reduce further spread of the virus within China and elsewhere. Although WHO has not recommended any international travelling restrictions so far, 15 the local government in Wuhan announced on Jan 23, 2020, the suspension of public transportation, with closure of airports, railway stations, and highways in the city, to prevent further disease transmission. 16 Further efforts in travel restriction might follow. Active surveillance for new cases and close monitoring of their contacts are being implemented. To improve detection efficiency, front-line clinics, apart from local centres for disease control and prevention, should be armed with validated point-of-care diagnostic kits. Rapid information disclosure is a top priority for disease control and prevention. A daily press release system has been established in China to ensure effective and efficient disclosure of epidemic information. Education campaigns should be launched to promote precautions for travellers, including frequent hand-washing, cough etiquette, and use of personal protection equipment (eg, masks) when visiting public places. Also, the general public should be motivated to report fever and other risk factors for coronavirus infection, including travel history to affected area and close contacts with confirmed or suspected cases. Considering that substantial numbers of patients with SARS and MERS were infected in health-care settings, precautions need to be taken to prevent nosocomial spread of the virus. Unfortunately, 16 health-care workers, some of whom were working in the same ward, have been confirmed to be infected with 2019-nCoV to date, although the routes of transmission and the possible role of so-called super-spreaders remain to be clarified. 9 Epidemiological studies need to be done to assess risk factors for infection in health-care personnel and quantify potential subclinical or asymptomatic infections. Notably, the transmission of SARS-CoV was eventually halted by public health measures including elimination of nosocomial infections. We need to be wary of the current outbreak turning into a sustained epidemic or even a pandemic. The availability of the virus' genetic sequence and initial data on the epidemiology and clinical consequences of the 2019-nCoV infections are only the first steps to understanding the threat posed by this pathogen. Many important questions remain unanswered, including its origin, extent, and duration of transmission in humans, ability to infect other animal hosts, and the spectrum and pathogenesis of human infections. Characterising viral isolates from successive generations of human infections will be key to updating diagnostics and assessing viral evolution. Beyond supportive care, 17 no specific coronavirus antivirals or vaccines of proven efficacy in humans exist, although clinical trials of both are ongoing for MERS-CoV and one controlled trial of ritonavir-boosted lopinavir monotherapy has been launched for 2019-nCoV (ChiCTR2000029308). Future animal model and clinical studies should focus on assessing the effectiveness and safety of promising antiviral drugs, monoclonal and polyclonal neutralising antibody products, and therapeutics directed against immunopathologic host responses. We have to be aware of the challenge and concerns brought by 2019-nCoV to our community. Every effort should be given to understand and control the disease, and the time to act is now. This online publication has been corrected. The corrected version first appeared at thelancet.com on January 29, 2020
            • Record: found
            • Abstract: not found
            • Article: not found

            Defining the Epidemiology of Covid-19 — Studies Needed

              • Record: found
              • Abstract: found
              • Article: not found

              Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study

              Summary Background Assessing the burden of COVID-19 on the basis of medically attended case numbers is suboptimal given its reliance on testing strategy, changing case definitions, and disease presentation. Population-based serosurveys measuring anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) antibodies provide one method for estimating infection rates and monitoring the progression of the epidemic. Here, we estimate weekly seroprevalence of anti-SARS-CoV-2 antibodies in the population of Geneva, Switzerland, during the epidemic. Methods The SEROCoV-POP study is a population-based study of former participants of the Bus Santé study and their household members. We planned a series of 12 consecutive weekly serosurveys among randomly selected participants from a previous population-representative survey, and their household members aged 5 years and older. We tested each participant for anti-SARS-CoV-2-IgG antibodies using a commercially available ELISA. We estimated seroprevalence using a Bayesian logistic regression model taking into account test performance and adjusting for the age and sex of Geneva's population. Here we present results from the first 5 weeks of the study. Findings Between April 6 and May 9, 2020, we enrolled 2766 participants from 1339 households, with a demographic distribution similar to that of the canton of Geneva. In the first week, we estimated a seroprevalence of 4·8% (95% CI 2·4–8·0, n=341). The estimate increased to 8·5% (5·9–11·4, n=469) in the second week, to 10·9% (7·9–14·4, n=577) in the third week, 6·6% (4·3–9·4, n=604) in the fourth week, and 10·8% (8·2–13·9, n=775) in the fifth week. Individuals aged 5–9 years (relative risk [RR] 0·32 [95% CI 0·11–0·63]) and those older than 65 years (RR 0·50 [0·28–0·78]) had a significantly lower risk of being seropositive than those aged 20–49 years. After accounting for the time to seroconversion, we estimated that for every reported confirmed case, there were 11·6 infections in the community. Interpretation These results suggest that most of the population of Geneva remained uninfected during this wave of the pandemic, despite the high prevalence of COVID-19 in the region (5000 reported clinical cases over <2·5 months in the population of half a million people). Assuming that the presence of IgG antibodies is associated with immunity, these results highlight that the epidemic is far from coming to an end by means of fewer susceptible people in the population. Further, a significantly lower seroprevalence was observed for children aged 5–9 years and adults older than 65 years, compared with those aged 10–64 years. These results will inform countries considering the easing of restrictions aimed at curbing transmission. Funding Swiss Federal Office of Public Health, Swiss School of Public Health (Corona Immunitas research program), Fondation de Bienfaisance du Groupe Pictet, Fondation Ancrage, Fondation Privée des Hôpitaux Universitaires de Genève, and Center for Emerging Viral Diseases.

                Author and article information

                Cureus (Palo Alto (CA) )
                19 February 2024
                February 2024
                : 16
                : 2
                : e54460
                [1 ] Virology, "St. S. Nicolau" Institute of Virology, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
                Author notes
                Copyright © 2024, Rigatou et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License CC-BY 4.0., which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                : 18 February 2024
                Internal Medicine
                Infectious Disease

                infectious diseases,balkan peninsula,virology,epidemiology,sars-cov-2


                Comment on this article