32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Ancient genomes revisit the ancestry of domestic and Przewalski’s horses

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,   , , ,
      Science
      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5,500 ya, but the exact nature of early horse domestication remains controversial. We generated 42 ancient horse genomes, including 20 from Botai. Compared to 46 published ancient and modern horse genomes, our data indicate that Przewalski’s horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4,000 ya to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of damage in genomic DNA sequences from a Neandertal.

          High-throughput direct sequencing techniques have recently opened the possibility to sequence genomes from Pleistocene organisms. Here we analyze DNA sequences determined from a Neandertal, a mammoth, and a cave bear. We show that purines are overrepresented at positions adjacent to the breaks in the ancient DNA, suggesting that depurination has contributed to its degradation. We furthermore show that substitutions resulting from miscoding cytosine residues are vastly overrepresented in the DNA sequences and drastically clustered in the ends of the molecules, whereas other substitutions are rare. We present a model where the observed substitution patterns are used to estimate the rate of deamination of cytosine residues in single- and double-stranded portions of the DNA, the length of single-stranded ends, and the frequency of nicks. The results suggest that reliable genome sequences can be obtained from Pleistocene organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genome sequence, comparative analysis, and population genetics of the domestic horse.

            We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Performance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood

              We present an evolutionary placement algorithm (EPA) and a Web server for the rapid assignment of sequence fragments (short reads) to edges of a given phylogenetic tree under the maximum-likelihood model. The accuracy of the algorithm is evaluated on several real-world data sets and compared with placement by pair-wise sequence comparison, using edit distances and BLAST. We introduce a slow and accurate as well as a fast and less accurate placement algorithm. For the slow algorithm, we develop additional heuristic techniques that yield almost the same run times as the fast version with only a small loss of accuracy. When those additional heuristics are employed, the run time of the more accurate algorithm is comparable with that of a simple BLAST search for data sets with a high number of short query sequences. Moreover, the accuracy of the EPA is significantly higher, in particular when the sample of taxa in the reference topology is sparse or inadequate. Our algorithm, which has been integrated into RAxML, therefore provides an equally fast but more accurate alternative to BLAST for tree-based inference of the evolutionary origin and composition of short sequence reads. We are also actively developing a Web server that offers a freely available service for computing read placements on trees using the EPA.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 05 2018
                April 06 2018
                April 06 2018
                February 22 2018
                : 360
                : 6384
                : 111-114
                Article
                10.1126/science.aao3297
                29472442
                87bc78b5-c89f-4eba-900f-332750ef20df
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article