74
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Technologies allowing for specific regulation of endogenous genes are valuable for the study of gene functions and have great potential in therapeutics. We created the CRISPR-on system, a two-component transcriptional activator consisting of a nuclease-dead Cas9 (dCas9) protein fused with a transcriptional activation domain and single guide RNAs (sgRNAs) with complementary sequence to gene promoters. We demonstrate that CRISPR-on can efficiently activate exogenous reporter genes in both human and mouse cells in a tunable manner. In addition, we show that robust reporter gene activation in vivo can be achieved by injecting the system components into mouse zygotes. Furthermore, we show that CRISPR-on can activate the endogenous IL1RN, SOX2, and OCT4 genes. The most efficient gene activation was achieved by clusters of 3-4 sgRNAs binding to the proximal promoters, suggesting their synergistic action in gene induction. Significantly, when sgRNAs targeting multiple genes were simultaneously introduced into cells, robust multiplexed endogenous gene activation was achieved. Genome-wide expression profiling demonstrated high specificity of the system.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient In Vivo Genome Editing Using RNA-Guided Nucleases

          Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems have evolved in bacteria and archaea as a defense mechanism to silence foreign nucleic acids of viruses and plasmids. Recent work has shown that bacterial type II CRISPR systems can be adapted to create guide RNAs (gRNAs) capable of directing site-specific DNA cleavage by the Cas9 nuclease in vitro. Here we show that this system can function in vivo to induce targeted genetic modifications in zebrafish embryos with efficiencies comparable to those obtained using ZFNs and TALENs for the same genes. RNA-guided nucleases robustly enabled genome editing at 9 of 11 different sites tested, including two for which TALENs previously failed to induce alterations. These results demonstrate that programmable CRISPR/Cas systems provide a simple, rapid, and highly scalable method for altering genes in vivo, opening the door to using RNA-guided nucleases for genome editing in a wide range of organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcription factors: from enhancer binding to developmental control.

            Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors

              The ability to direct functional domains to specific DNA sequences is a long sought-after goal for studying and engineering biological processes. Transcription activator like effectors (TALEs) from Xanthomonas sp. present a promising platform for designing sequence-specific DNA binding proteins. Here we describe a robust and rapid method for overcoming the difficulty of constructing TALE repeat domains. We synthesized 17 designer TALEs (dTALEs) that are customized to recognize specific DNA binding sites, and demonstrate that dTALEs can specifically modulate transcription of endogenous genes (Sox2 and Klf4) from the native genome in human cells. dTALEs provide a designable DNA targeting platform for the interrogation and engineering of biological systems.
                Bookmark

                Author and article information

                Journal
                Cell Res
                Cell Res
                Cell Research
                Nature Publishing Group
                1001-0602
                1748-7838
                October 2013
                27 August 2013
                1 October 2013
                : 23
                : 10
                : 1163-1171
                Affiliations
                [1 ]Whitehead Institute for Biomedical Research , Cambridge, MA 02142, USA
                [2 ]Computational and Systems Biology Program, Massachusetts Institute of Technology , Cambridge, MA 02139, USA
                [3 ]Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, MA 02139, USA
                [4 ]Department of Biology, Massachusetts Institute of Technology , Cambridge, MA 02139, USA
                Author notes
                [* ]Tel: +1-617-258-5186 E-mail: jaenisch@ 123456wi.mit.edu
                [*]

                These two authors contributed equally to this work.

                Article
                cr2013122
                10.1038/cr.2013.122
                3790238
                23979020
                87c57150-5528-4583-9b28-e3d9c42b4487
                Copyright © 2013 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0

                History
                : 01 August 2013
                : 10 August 2013
                : 13 August 2013
                Categories
                Original Article

                Cell biology
                crispr,transcription factor,synthetic biology,gene expression,artificial transcription factor

                Comments

                Comment on this article