47
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bacterial Profiling Reveals Novel “ Ca. Neoehrlichia”, Ehrlichia, and Anaplasma Species in Australian Human-Biting Ticks

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Australia, a conclusive aetiology of Lyme disease-like illness in human patients remains elusive, despite growing numbers of people presenting with symptoms attributed to tick bites. In the present study, we surveyed the microbial communities harboured by human-biting ticks from across Australia to identify bacteria that may contribute to this syndrome. Universal PCR primers were used to amplify the V1-2 hyper-variable region of bacterial 16S rRNA genes in DNA samples from individual Ixodes holocyclus ( n = 279), Amblyomma triguttatum ( n = 167), Haemaphysalis bancrofti ( n = 7), and H. longicornis ( n = 7) ticks. The 16S amplicons were sequenced on the Illumina MiSeq platform and analysed in USEARCH, QIIME, and BLAST to assign genus and species-level taxonomies. Nested PCR and Sanger sequencing were used to confirm the NGS data and further analyse novel findings. All 460 ticks were negative for Borrelia spp. by both NGS and nested PCR analysis. Two novel “ Candidatus Neoehrlichia” spp. were identified in 12.9% of I. holocyclus ticks. A novel Anaplasma sp. was identified in 1.8% of A. triguttatum ticks, and a novel Ehrlichia sp. was identified in both A. triguttatum (1.2%) ticks and a single I. holocyclus (0.6%) tick. Further phylogenetic analysis of novel “ Ca. Neoehrlichia”, Anaplasma and Ehrlichia based on 1,265 bp 16S rRNA gene sequences suggests that these are new species. Determining whether these newly discovered organisms cause disease in humans and animals, like closely related bacteria do abroad, is of public health importance and requires further investigation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies

          The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Sm16, a major component of Schistosoma mansoni cercarial excretory/secretory products, prevents macrophage classical activation and delays antigen processing

            Background Schistosoma mansoni cercariae penetrate the skin by releasing excretory/secretory (E/S) products known as 0-3hRP, which are associated with immune modulation through Toll like receptor (TLR) signalling. Furthermore, these secretions contain Sm16, which when given to cells as a recombinant protein inhibits human monocyte derived cytokine responses to TLR4 and TLR3 ligands. Nonetheless, the extent and mechanism(s) of these inhibitory effects remain largely uncharacterized. Methods Murine bone marrow derived macrophages were exposed to different fractions of 0-3hRP, obtained via ultracentrifugation, or recombinant Sm16. These cells were exposed to the parasite molecules in combination with different TLR ligands, or Interferon gamma, and tested for the production of the cytokines IL-10 and IL-12p40, and their ability to process antigen. Results The immunomodulatory function of 0-3hRP is enriched predominantly in the pellet fraction, which contains a greater proportion of Sm16, also corroborating the ability of recombinant Sm16 to inhibit macrophage activation in response to TLR ligands. We further demonstrate that Sm16 blocks classical activation of macrophages to LPS or IFN-γ stimulation in vitro, and that inhibition of macrophage classical activation is independent of TLR2 recognition. Finally we show that Sm16 shares the altered intracellular processing observed for 0-3hRP, and is able to delay antigen processing by macrophages. Conclusions Collectively, our findings show that Sm16 is a major component of S. mansoni cercarial E/S products, and is partly responsible for its immune-regulatory properties. Moreover, we propose that the mechanism employed by Sm16 to exert its inhibitory function is likely to be linked with alteration of endosomal trafficking and is not dependent on particular TLR receptors. Finally, we suggest that accumulation of Sm16 in the skin after percutaneous infection with S. mansoni cercariae could contribute to limiting dermal inflammation. Electronic supplementary material The online version of this article (doi:10.1186/s13071-014-0608-1) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States.

              Until the 1990s, Amblyomma americanum was regarded primarily as a nuisance species, but a tick of minor importance as a vector of zoonotic pathogens affecting humans. With the recent discoveries of Ehrlichia chaffeensis, Ehrlichia ewingii, and "Borrelia lonestari," the public health relevance of lone star ticks is no longer in question. During the next 25 years, the number of cases of human disease caused by A. americanum-associated pathogens will probably increase. Based on current trajectories and historic precedents, the increase will be primarily driven by biological and environmental factors that alter the geographic distribution and intensity of transmission of zoonotic pathogens. Sociologic and demographic changes that influence the likelihood of highly susceptible humans coming into contact with infected lone star ticks, in addition to advances in diagnostic capabilities and national surveillance efforts, will also contribute to the anticipated increase in the number of recognized cases of disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                28 December 2015
                2015
                : 10
                : 12
                : e0145449
                Affiliations
                [1 ]Vector and Water-borne Pathogen Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
                [2 ]Department of Medical Entomology, Pathology West and Institute for Clinical Pathology and Medical Research, Westmead Hospital, Westmead, New South Wales, Australia
                [3 ]Emergency Department, Mona Vale Hospital, New South Wales, Australia
                Metabiota, UNITED STATES
                Author notes

                Competing Interests: The authors have read the journal’s policy and have the following competing interests: This research was part funded by Bayer Healthcare and Bayer Australia Ltd. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

                Conceived and designed the experiments: AWG SD UR PI. Performed the experiments: AWG SD. Analyzed the data: AWG. Contributed reagents/materials/analysis tools: AWG SD AR UR CLO AP PI. Wrote the paper: AWG SD AR UR CLO AP PI.

                Article
                PONE-D-15-44586
                10.1371/journal.pone.0145449
                4692421
                26709826
                87d2bab7-c98b-4a9d-94f3-d427ff3f96b0
                © 2015 Gofton et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 October 2015
                : 3 December 2015
                Page count
                Figures: 3, Tables: 1, Pages: 16
                Funding
                This study was part-funded by the Australian Research Council (LP13010050), www.arc.gov.au, Bayer Healthcare, www.healthcare.bayer.com, and Bayer Australia Ltd., www.bayer.com.au. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All NGS 16S sequences are available from NCBI Bioproject database (PRJNA298108). Sanger sequencing results for Anaplasmataceae 16S sequences are available from the GenBank accessions cited in text.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article