+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Early Clinical Features of Dengue in Adults: Challenges for Early Clinical Diagnosis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The emergence of dengue throughout the tropical world is affecting an increasing proportion of adult cases. The clinical features of dengue in different age groups have not been well examined, especially in the context of early clinical diagnosis.

          Methodology/Principal Findings

          We structured a prospective study of adults (≥18 years of age) presenting with acute febrile illness within 72 hours from illness onset upon informed consent. Patients were followed up over a 3–4 week period to determine the clinical outcome. A total of 2,129 adults were enrolled in the study, of which 250 (11.7%) had dengue. Differences in the rates of dengue-associated symptoms resulted in high sensitivities when the WHO 1997 or 2009 classification schemes for probable dengue fever were applied to the cohort. However, when the cases were stratified into age groups, fewer older adults reported symptoms such as myalgia, arthralgia, retro-orbital pain and mucosal bleeding, resulting in reduced sensitivity of the WHO classification schemes. On the other hand, the risks of severe dengue and hospitalization were not diminshed in older adults, indicating that this group of patients can benefit from early diagnosis, especially when an antiviral drug becomes available. Our data also suggests that older adults who present with fever and leukopenia should be tested for dengue, even in the absence of other symptoms.


          Early clinical diagnosis based on previously defined symptoms that are associated with dengue, even when used in the schematics of both the WHO 1997 and 2009 classifications, is difficult in older adults.

          Author Summary

          Dengue infection in adults has become increasingly common throughout the world. As most of the clinical features of dengue have been described in children, we undertook a prospective study to determine the early symptoms and signs of dengue in adults. We show here that, overall, dengue cases presented with high rates of symptoms listed in the WHO 1997 or 2009 classification schemes for probable dengue fever thus resulting in high sensitivities of these schemes when applied for early diagnosis. However, symptoms such as myalgia, arthralgia, retro-orbital pain and mucosal bleeding were less frequently reported in older adults. This trend resulted in reduced sensitivity of the WHO classification schemes in older adults even though they showed increased risks of hospitalization and severe dengue. Instead, we suggest that older adults who present with fever and leukopenia should be tested for dengue, even in the absence of other symptoms. This could be useful for early clinical diagnosis in older adults so that they can be monitored and treated for severe dengue, which is especially important when an antiviral drug becomes available.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis of dengue: challenges to molecular biology.

          Dengue viruses occur as four antigenically related but distinct serotypes transmitted to humans by Aedes aegypti mosquitoes. These viruses generally cause a benign syndrome, dengue fever, in the American and African tropics, and a severe syndrome, dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS), in Southeast Asian children. This severe syndrome, which recently has also been identified in children infected with the virus in Puerto Rico, is characterized by increased vascular permeability and abnormal hemostasis. It occurs in infants less than 1 year of age born to dengue-immune mothers and in children 1 year and older who are immune to one serotype of dengue virus and are experiencing infection with a second serotype. Dengue viruses replicate in cells of mononuclear phagocyte lineage, and subneutralizing concentrations of dengue antibody enhance dengue virus infection in these cells. This antibody-dependent enhancement of infection regulates dengue disease in human beings, although disease severity may also be controlled genetically, possibly by permitting and restricting the growth of virus in monocytes. Monoclonal antibodies show heterogeneous distribution of antigenic epitopes on dengue viruses. These epitopes serve to regulate disease: when antibodies to shared antigens partially neutralize heterotypic virus, infection and disease are dampened; enhancing antibodies alone result in heightened disease response. Further knowledge of the structure of dengue genomes should permit rapid advances in understanding the pathogenetic mechanisms of dengue.
            • Record: found
            • Abstract: found
            • Article: found

            Global Spread and Persistence of Dengue

            Dengue is a spectrum of disease caused by four serotypes of the most prevalent arthropod-borne virus affecting humans today, and its incidence has increased dramatically in the past 50 years. Due in part to population growth and uncontrolled urbanization in tropical and subtropical countries, breeding sites for the mosquitoes that transmit dengue virus have proliferated, and successful vector control has proven problematic. Dengue viruses have evolved rapidly as they have spread worldwide, and genotypes associated with increased virulence have expanded from South and Southeast Asia into the Pacific and the Americas. This review explores the human, mosquito, and viral factors that contribute to the global spread and persistence of dengue, as well as the interaction between the three spheres, in the context of ecological and climate changes. What is known, as well as gaps in knowledge, is emphasized in light of future prospects for control and prevention of this pandemic disease.
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza a and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4.

              Laboratory diagnosis of viral respiratory infections is generally performed by virus isolation in cell culture and immunofluorescent assays. Reverse transcriptase PCR is now recognized as a sensitive and specific alternative for detection of respiratory RNA viruses. A rapid real-time multiplex PCR assay was developed for the detection of influenza A and influenza B viruses, human respiratory syncytial virus (RSV), parainfluenza virus 1 (PIV1), PIV2, PIV3, and PIV4 in a two-tube multiplex reaction which used molecular beacons to discriminate the pathogens. A total of 358 respiratory samples taken over a 1-year period were analyzed by the multiplex assay. The incidence of respiratory viruses detected in these samples was 67 of 358 (19%) and 87 of 358 (24%) by culture and real-time PCR, respectively. Culture detected 3 influenza A virus, 2 influenza B virus, 57 RSV, 2 PIV1, and 2 PIV3 infections. All of these culture-positive samples and an additional 5 influenza A virus, 6 RSV, 2 PIV1, 1 PIV2, 1 PIV3, and 3 PIV4 infections were detected by the multiplex real-time PCR. The application of real-time PCR to clinical samples increases the sensitivity for respiratory viral diagnosis. In addition, results can be obtained within 6 h, which increases clinical relevance. Therefore, use of this real-time PCR assay would improve patient management and infection control.

                Author and article information

                Role: Editor
                PLoS Negl Trop Dis
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                May 2011
                31 May 2011
                : 5
                : 5
                [1 ]Communicable Diseases Centre, Tan Tock Seng Hospital, Singapore, Singapore
                [2 ]Environmental Health Institute, National Environment Agency, Singapore, Singapore
                [3 ]Duke-NUS Graduate Medical School, Singapore, Singapore
                [4 ]DSO National Laboratories, Singapore, Singapore
                [5 ]Singapore Clinical Research Institute, Singapore, Singapore
                [6 ]Genome Institute of Singapore, Singapore, Singapore
                University of California, Berkeley, United States of America
                Author notes

                Conceived and designed the experiments: JGHL AO MLH SGV EEO. Performed the experiments: JGHL AO LKT SC AC WYL KWL RC CRC SWST. Analyzed the data: SC YBC EEO. Contributed reagents/materials/analysis tools: L-CN YSL. Wrote the paper: JGHL AO EEO.

                Low et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Research Article
                Infectious Diseases
                Viral Diseases

                Infectious disease & Microbiology


                Comment on this article