9
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Clinical Interventions in Aging (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on prevention and treatment of diseases in people over 65 years of age. Sign up for email alerts here.

      36,334 Monthly downloads/views I 3.829 Impact Factor I 7.4 CiteScore I 1.83 Source Normalized Impact per Paper (SNIP) I 1.044 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Age-Dependent Disparities in the Prevalence of Single and Clustering Cardiovascular Risk Factors: A Cross-Sectional Cohort Study in Middle-Aged and Older Adults

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide; with age acknowledged as an independent cardiovascular risk factor (CRF) in adults. Appreciating the association between age and classic CRFs is believed to boost all potential benefits of prevention.

          Purpose

          Assessment of the prevalence of single and clustered CRFs and their association with age.

          Patients and Methods

          The survey involved 4735 people (33.6% men) who were PONS project attendees aged 45–64. The study protocol comprised the Health Status Questionnaire, general medical examination, anthropometric measurements, and blood and urine sampling. The prevalence of single and clustered CRFs (hypertension, dyslipidemia, diabetes mellitus, and obesity) in the incrementally split age groups was calculated. The incidence rate of CRFs, against their absence, was determined by Poisson regression models with robust standard errors.

          Results

          The prevalence of CRFs was established in 90% of the respondents. Except dyslipidemia and ≥1 CRFs, prevalence of risk factors increased with age, although this trend was the weakest in men. In the total group, and in women, prevalence of dyslipidemia and ≥1 CRFs was unrelated to age, whereas in men, it was on the rise in the younger age groups. The incidence rate of CRFs was strongly related to age, and, with the exception of dyslipidemia, was higher in the older age groups.

          Conclusion

          Cardiovascular risk factors are common in the adult population, while their prevalence and clustering are more prevalent in seniors. Apart from dyslipidemia, the risk of CRFs is appreciably age-related, and higher in seniors.

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Lifetime risks of cardiovascular disease.

          The lifetime risks of cardiovascular disease have not been reported across the age spectrum in black adults and white adults. We conducted a meta-analysis at the individual level using data from 18 cohort studies involving a total of 257,384 black men and women and white men and women whose risk factors for cardiovascular disease were measured at the ages of 45, 55, 65, and 75 years. Blood pressure, cholesterol level, smoking status, and diabetes status were used to stratify participants according to risk factors into five mutually exclusive categories. The remaining lifetime risks of cardiovascular events were estimated for participants in each category at each age, with death free of cardiovascular disease treated as a competing event. We observed marked differences in the lifetime risks of cardiovascular disease across risk-factor strata. Among participants who were 55 years of age, those with an optimal risk-factor profile (total cholesterol level, <180 mg per deciliter [4.7 mmol per liter]; blood pressure, <120 mm Hg systolic and 80 mm Hg diastolic; nonsmoking status; and nondiabetic status) had substantially lower risks of death from cardiovascular disease through the age of 80 years than participants with two or more major risk factors (4.7% vs. 29.6% among men, 6.4% vs. 20.5% among women). Those with an optimal risk-factor profile also had lower lifetime risks of fatal coronary heart disease or nonfatal myocardial infarction (3.6% vs. 37.5% among men, <1% vs. 18.3% among women) and fatal or nonfatal stroke (2.3% vs. 8.3% among men, 5.3% vs. 10.7% among women). Similar trends within risk-factor strata were observed among blacks and whites and across diverse birth cohorts. Differences in risk-factor burden translate into marked differences in the lifetime risk of cardiovascular disease, and these differences are consistent across race and birth cohorts. (Funded by the National Heart, Lung, and Blood Institute.).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ageing, metabolism and cardiovascular disease.

            Age is one of the major risk factors associated with cardiovascular disease (CVD). About one-fifth of the world population will be aged 65 or older by 2030, with an exponential increase in CVD prevalence. It is well established that environmental factors (overnutrition, smoking, pollution, sedentary lifestyles) may lead to premature defects in mitochondrial functionality, insulin signalling, endothelial homeostasis and redox balance, fostering early senescent features. Over the last few years, molecular investigations have unveiled common signalling networks which may link the ageing process with deterioration of cardiovascular homeostasis and metabolic disturbances, namely insulin resistance. These different processes seem to be highly interconnected and their interplay may favour adverse vascular and cardiac phenotypes responsible for myocardial infarction, stroke and heart failure. In the present review, we carefully describe novel molecular cues underpinning ageing, metabolism and CVD. In particular, we describe a dynamic interplay between emerging pathways such as FOXOs, AMPK, SIRT1, p66(Shc) , JunD and NF-kB. This overview will provide the background for attractive molecular targets to prevent age-driven pathology in the vasculature and the heart.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Risk Factors for Coronary Artery Disease: Historical Perspectives

              INTRODUCTION We consider our current understanding and therapy of cardiovascular diseases (CVD) state-of-the-art, but heart disease is still a problem because there is still a lot that we do not know. There is still no cure for any form of heart disease. However, research is ongoing, and new clues are emerging which could lead to better treatments in the future. Results from epidemiological studies, foremost among them the Framingham study, have been crucial to our current knowledge about CVD. Emphasis is on the identification of risk factors, assessment of their predictive ability, and their implications for disease prevention. The concept of “risk factors” in coronary heart disease (CHD) was first coined by the Framingham heart study (FHS), which published its findings in 1957. FHS demonstrated the epidemiologic relations of cigarette smoking, blood pressure, and cholesterol levels to the incidence of coronary artery disease (CAD). The findings were truly revolutionary for it helped bring about a change in the way medicine is practiced. Beginnings of our understanding For thousands of years, our knowledge of the causes of CVD and its therapy was static. It was only in the last half of the 20th century that research into the causes of CVDs accelerated, and with it, new therapies were found. What stimulated this research? The premature death in 1945 of the US President Franklin D. Roosevelt from hypertensive heart disease and stroke stimulated this research in USA.[1] Deaths from CVD and stroke reached epidemic proportions in the USA at that time which induced the Americans to take the lead in cardiovascular research. The death of President Roosevelt illustrated how little we knew about the general causes of heart disease and stroke. Therefore, a health project was set up in the USA– the FHS – to identify the common factors or characteristics that contribute to CVD. FHS was under the direction of the National Heart Institute, now known as the National Heart, Lung, and Blood Institute.[2] Researchers followed the development of CHD over a long period in a large group of participants who had not yet developed overt symptoms of CVD or suffered a heart attack or stroke. The small town of Framingham in Massachusetts, USA was chosen due to its geographical proximity to the many cardiologists at Harvard Medical School. Furthermore, the residents had already participated in the Framingham tuberculosis demonstration study two decades earlier.[3] The town of Framingham is located outside Boston. It was a small, middle-class community, and its small population made it an ideal site to launch the heart study. Everybody knew everyone. It was a typical small-town in the USA. The researchers hoped they would find clues in the medical histories of the people of Framingham which might shed light on causes of CVD. They recruited 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts. These study subjects underwent extensive physical examinations and lifestyle interviews that were analyzed for common patterns related to CVD development. Since 1948, the subjects have continued to return to the study every 2 years for a detailed medical history, physical examination, and laboratory tests, and in 1971, the study enrolled a second generation-5,124 of the original participants' adult children, and their spouses to participate in similar examinations.[2] The FHS is now on its third generation of participants. The study has provided substantial insight into the epidemiology of CVD and its risk factors. Framingham study leads the way The Framingham study was responsible for pointing out fallacies in our understanding of CVDs and identification of its major risk factors: high blood pressure, high blood cholesterol, smoking, obesity, diabetes, and physical inactivity as well as other valuable information on the effects of related factors such as blood triglyceride and high density lipoprotein (HDL) cholesterol levels, age, gender, and psychosocial issues. To date, no single risk factor has been identified to be responsible for causing CVD; rather, multiple interrelated factors seem responsible for its development. Although the Framingham cohort is Caucasian, other studies have shown that the major risk factors identified in this group apply universally to other racial and ethnic groups. The notion of CVD risk factors is an integral part of modern medicine which has led to the development of effective treatment and preventive strategies in clinical practice. Fallacies corrected Physicians are sometimes taught some theories that are believed to be true without having been proven. These ideas or notions have been doctrines from centuries' old practices. Many of these concepts are taught us in medical school such as the notion that an elevated systolic blood pressure (BP) in the elderly is “normal,” which of course is false as I will discuss later. Then, a study comes along to dispel these erroneous ideas. Such a study was the Framingham heart study. Its epidemiological model of research has unraveled many of the fallacies in our understanding and helped to bring about a change in the way medicine is practiced. The development of CHD through the prism of its major conventional cardiovascular risk factors – hypertension, hypercholesterolemia, smoking, and diabetes mellitus– is interesting, and hence, I will briefly look at how they evolved as risks through the “eyes” of the FHS and other epidemiological studies. The major risk factors There are many risk factors for CAD and some can be controlled but not others. The risk factors that can be controlled (modifiable) are: High BP; high blood cholesterol levels; smoking; diabetes; overweight or obesity; lack of physical activity; unhealthy diet and stress. Those that cannot be controlled (conventional) are: Age (simply getting older increases risk); sex (men are generally at greater risk of coronary artery disease); family history; and race. Hypertension Hypertension is one of the risks in the development of CHD. The American President Roosevelt died from cerebral hemorrhage, sequelae of hypertension. Old myths corrected Many old physicians thought that high BP was necessary to force blood through the stiffened arteries of older persons and that it was a normal element of aging. The medical community believed that a permissible systolic BP was 100 plus the participant's age in millimeters of mercury.[4 5] For those aged >70 years, some considered the acceptable upper limits of normal BP to be 210 mmHg systolic and 120 mmHg diastolic.[6] It was considered appropriate to ignore benign essential hypertension and isolated systolic hypertension. I remember that I was taught in medical school that diastolic pressure was a superior measure of blood pressure. The cardiovascular hazard of hypertension was believed to derive chiefly from the diastolic pressure component. Consequently, elevated systolic pressure was considered harmless, especially in the elderly.[7 8] FHS dispelled the concept of “benign essential hypertension.” Belief in the prime importance of the diastolic pressure was convincingly refuted by Framingham study data and later confirmed by other prospectively obtained data demonstrating that the impact of systolic pressure is actually greater than the diastolic component and that even isolated systolic hypertension is dangerous.[9 10] FHS investigators found an increased risk of CAD morbidity with rising baseline blood pressure. They challenged the existing belief “that systolic pressure is unimportant, and that labile or benign essential hypertension is of little consequence.” They stated that there was “little evidence to support these contentions but considerable reason to doubt them.”[11] The importance of controlling BP was finally embraced in practice guidelines in the first “Report of the Joint National Committee (JNC) on Detection, Evaluation, and Treatment of High Blood Pressure” in 1977.[12] It is now recognized universally that hypertension increases atherosclerotic CVD incidence; the risk burden is 2–3-fold. CAD is the most common sequelae for hypertensive patients of all ages.[13] Hypertension predisposes to all clinical manifestations of CHD including myocardial infarction, angina pectoris, and sudden death. Even high normal BP values are associated with an increased risk of CVD.[14] It was thought that the risk ratio for intracerebral hemorrhage was greater than for atherothrombotic brain infarction. This was not true. It was found that hypertension was as strong a risk for atherothrombotic brain infarction as intracerebral hemorrhage.[11] Framingham showed that the preponderance of hypertension-related strokes were atherothrombotic brain infarctions whether the hypertension was severe or mild. The proportion of strokes due to hemorrhage in mild hypertension was identical to that for severe hypertension.[4] The Seventh JNC on hypertension established that those with BP of 120–139/80–89 mmHg are prehypertensives, that is, these individuals may become hypertensives in the future. Starting as low as 115/75 mmHg, the risk of heart attack and stroke doubles for every 20-point jump in systolic BP or every 10-point rise in diastolic BP for adults aged 40–70. The presence of other risk factors for CVD such as high cholesterol, obesity, and diabetes is seen more in people with prehypertension than in those with normal blood pressure. The CVD risk in prehypertensives increases with the number of associated risk factors present. Therefore, prehypertension confers a greater risk for CVD. In persons with mild to moderate hypertension, the substantial risk was shown to be concentrated in those with coexistent dyslipidemia, diabetes, and left ventricular hypertrophy. Hypertensive elderlies were commonly found to already have target organ damage such as impaired renal function, silent myocardial infarction, strokes, transient ischemic attacks, retinopathy, or peripheral artery disease. At least 60% of older men and 50% of elderly women with hypertension in the Framingham study had one or more of these conditions.[11] In the past, initiation of antihypertensive treatment was often delayed until there was evidence of target organ involvement. Framingham study data indicated that this practice was unwise because 40%–50% of hypertensive persons developed overt cardiovascular events before evidence of target organ damage such as proteinuria, cardiomegaly, or electrocardiogram abnormalities.[11] Various guidelines and numerous updates of guidelines on hypertension have been promulgated to improve its treatment and to prevent its adverse cardiovascular consequences. There is no cure for hypertension, but there are helpful pharmacological therapy and some strategies that a person can do to lower risk such as diet and exercise and checking BP regularly. Hypercholesterolemia The other major risk for CVD was cholesterol. In 1953, an association between cholesterol levels and CHD mortality was reported in various populations.[15] Animal and clinical observation have suggested such relationship. This association was confirmed by epidemiological studies showing a strong relation between serum total cholesterol and cardiovascular risk.[16 17 18] It was shown that changes in cholesterol levels were associated with changes in CVD incidence rate.[19] Clinicians and epidemiologists accepted these findings, agreeing that total plasma cholesterol was a useful marker for predicting CVD. It was found that its component– the low-density lipoprotein cholesterol (LDL-C) which is the principal lipoprotein transporting cholesterol in the blood, was also directly associated with CVD.[20 21 22] It was also found out that LDL cholesterol levels in young adulthood predict development of CVD later in life.[22] Current guidelines identify LDL-C as the primary target for high blood cholesterol therapy.[23] The benefits of LDL-C lowering drug therapies has been shown in various clinical, observational and experimental studies.[24] It has been shown that the benefits of reducing serum cholesterol for CHD risk are age-related: a 10% reduction in serum cholesterol produces a drop in CHD risk of 50% at the age of 40, 40% at age 50, 30% at age 60, and 20% at age 70.[25] Now, high density lipoprotein cholesterol (HDL-C) is accepted by the medical community as an important factor in atherosclerosis and consequently, raising HDL-C has become an accepted therapeutic strategy for decreasing CHD incidence rate. There are some drugs that increase HDL-C such as fibrates, niacin, and torcetrapib, a cholesterol ester transfer protein but only fibrates have been shown to reduce risk of major coronary events. It is estimated that a 1 mg/dL increase in HDL level is associated with a decrease in coronary risk of 2% in men and 3% in women.[26] Smoking The Framingham study showed that smokers were at increased risk of myocardial infarction (MI) or sudden death and that risk was associated to the number of cigarettes smoked each day.[27] These results were confirmed by other epidemiological studies.[28 29 30] The deleterious effect of smoking on health has been proven in many studies, in particular on atherosclerosis. The harmful effects of smoking on the heart can be appreciated in the following statistics: Cigarette smoking approximately doubles the risk of morbidity and mortality from ischemic heart disease compared with a lifetime of not smoking, and the risk is related to the duration and amount of smoking.[31 32] There is evidence that in patients with CHD, smoking cessation reduces the risk of all-cause mortality and nonfatal MI.[33] Therefore, all patients with ischemic heart disease should be advised to stop smoking because it is a strong risk factor for a first MI and for fatal and nonfatal recurrences. The risk of morbidity and mortality associated with cigarette smoking falls immediately after stopping smoking, although it may be >20 years, if at all, before the risk associated with smoking is completely reversed.[31 34] About 20% of patients will give up smoking after an acute MI with resultant 40% reduction in mortality rates and infarct recurrences.[35 36] For smokers under the age of 50 years the risk of developing CHD is 10 times greater than for nonsmokers of the same age.[37] Passive smoking also increases the risk of CHD.[38] Diabetes The role of diabetes in the pathogenesis of CVD was unclear until 1979 when Kannel et al. used data from the Framingham heart study to identify diabetes as a major cardiovascular risk factor. Based on 20 years of surveillance of the Framingham cohort, a two-fold to threefold increased risk of clinical atherosclerotic disease was reported. It was also one of the first studies to demonstrate the higher risk of CVD in women with diabetes compared to men with diabetes.[39] These results have been duplicated by multiple studies. The Kannel article changed the way the medical community thought about diabetes. It is now accepted as a major cardiovascular risk factor. There is a clear-cut relationship between diabetes and CVD. The American Heart association cites the following statistics:[40] At least 68% of people age 65 or older with diabetes die from some form of heart disease; and 16% die of stroke. Adults with diabetes are two to four times more likely to die from heart disease than adults without diabetes. The American Heart association considers diabetes to be one of the seven major controllable risk factors for CVD. Diabetes is treatable but even if glucose levels are under control it greatly increases the risk of heart disease and stroke because people with diabetes also have other conditions that are risks for developing CHD such as hypertension, smoking, abnormal cholesterol, obesity, lack of physical activity, and metabolic syndrome. The good news is that by managing these risk factors, people with diabetes may avoid or delay the development of CVD. Physical inactivity “Conductors on London's double-decker buses (up and down stairs 11 days a fortnight, 50 weeks a year, often for decades) experienced half or less the incidence of acute MI and “sudden death” ascribed to CHD in the sedentary bus drivers.”[41] Thus, began Morris et al. in his landmark article in 1953 which appeared in The Lancet on the association of physical activity and coronary artery disease. Since then a number of epidemiological studies have confirmed the relationship. The relative risk of death from CHD for sedentary compared with active individuals is 1.9 (95% confidence interval).[42] The recommendation of physical exercise has become an important element of preventative policies for the general population (in adults, elderly, and children). Obesity The association of obesity and CHD was fist noted by Kannel et al.[43] in Framingham 50 years ago. Obesity is also an independent risk factor for all-cause mortality. It is a metabolic disorder associated with comorbidities such as CHD, type 2 diabetes, hypertension, and sleep apnea. Alterations in metabolic profile and various adaptations in cardiac structure and function occur as excess adipose tissue accumulates.[44] A recent study reported that higher body mass index (BMI) during childhood is associated with an increased risk of CHD in adulthood.[44] The prevention and control of overweight and obesity in adults and children has become a key element for the prevention of cardiovascular diseases.[45 46] Cardiovascular diseases risk assessment Absolute prediction of CVD risk of a person can be made using prediction charts issued or published by the WHO and ACC/AHA. The recommendations are made for management of major cardiovascular risk factors through changes in lifestyle and prophylactic drug therapies. The ACC/AHA have produced guidelines for the procedures of detection, management, or prevention of CVD. In November 2013, The ACC and AHA released updated risk-assessment guidelines for atherosclerotic CVD. Changes and recommendations include the following.[47 48 49 50 51] Stroke is added to the list of coronary events traditionally covered by risk prediction equations. The guidelines focus primarily on the 10-year risk of atherosclerosis-related events; they focus secondarily on the assessment of lifetime risk for adults aged 59 or younger without high shorter-term risk. The strongest predictors of 10-year risk are identified as age, sex, race, total cholesterol, HDL-C, blood pressure, blood-pressure treatment status, diabetes, and current smoking status. Adjunct formulas for refining risk estimates by gender and race are provided. If risk prediction needs to be further sharpened after risk prediction equations have been performed, the guidelines indicate that coronary-artery calcium scores, family history, high-sensitivity C-reactive protein, and the ankle-brachial index can be used. The guidelines recommend that statin therapy be considered in individuals whose 10-year atherosclerotic cardiovascular disease (ASCVD) event risk is 7.5% or greater. Guidelines from AHA/ACC recommend use of a revised calculator for estimating the 10-year risk of developing a first ASCVD event, which is defined as a nonfatal MI, death from CHD, or stroke (fatal or nonfatal) in a person who was initially free from ASCVD.[51] The calculator incorporates the following risk factors: sex, age, race, total cholesterol, HDL, systolic blood pressure, treatment for elevated blood pressure, diabetes, and smoking. For patients 20–79 years of age who do not have existing clinical ASCVD, the guidelines recommend assessing clinical risk factors every 4–6 years. For patients with low 10-year risk ( 45 years in men and >55 years in women. A family history of early heart disease is also a risk factor, such as heart disease in the father or a brother diagnosed before age 55 years and in the mother or a sister diagnosed before age 65 years. Acute coronary and cerebrovascular events frequently occur suddenly, and are often fatal before medical care can be given. I have discussed above the major traditional risk factors. Many traditional risk factors for CAD are related to lifestyle, therefore preventative treatment can be tailored to modifying specific factors. It is very important to know these risks to reduce disability and premature deaths from CHD, cerebrovascular disease and peripheral vascular disease in people at high risk, who have not yet experienced a cardiovascular event. People with established CVD are at very high risk of recurrent events. Current guidelines provide advice on screening and identifying asymptomatic individuals at risk of developing CVD. The objectives of these guidelines are to reduce the incidence of first or recurrent clinical events due to CHD, ischemic stroke, and peripheral artery disease. The focus is on prevention of disability and early death. The guidelines emphasize the importance of lifestyle changes and use of different prophylactic drug therapies in the management of risks. The understanding of such risk factors is critical to the prevention of cardiovascular morbidities and mortality. Financial support and sponsorship Nil. Conflicts of interest There are no conflicts of interest.
                Bookmark

                Author and article information

                Journal
                Clin Interv Aging
                Clin Interv Aging
                CIA
                clinintag
                Clinical Interventions in Aging
                Dove
                1176-9092
                1178-1998
                05 February 2020
                2020
                : 15
                : 161-169
                Affiliations
                [1 ]Department of Epidemiology and Cancer Control, Holycross Cancer Centre , Kielce, Poland
                [2 ]Faculty of Medicine and Health Sciences, The Jan Kochanowski University , Kielce, Poland
                [3 ]Department of Rehabilitation, Holycross Cancer Centre , Kielce, Poland
                [4 ]Clinic of Oncological Surgery, Holycross Cancer Centre , Kielce, Poland
                [5 ]Research and Education Department, Holycross Cancer Centre , Kielce, Poland
                [6 ]Clinic of Clinical Oncology, Holycross Cancer Centre , Kielce, Poland
                Author notes
                Correspondence: Marek Zak Faculty of Medicine and Health Sciences, The Jan Kochanowski University , Al. IX Wiekow Kielc 19, Kielce25-317, PolandTel +48 41 349 6909Fax +48 41 349 6916 Email mkzak@ujk.edu.pl
                Author information
                http://orcid.org/0000-0001-9755-7507
                http://orcid.org/0000-0003-0881-9232
                http://orcid.org/0000-0002-0682-1104
                http://orcid.org/0000-0003-2822-4594
                http://orcid.org/0000-0003-3238-2421
                http://orcid.org/0000-0001-6716-6185
                http://orcid.org/0000-0001-6902-3807
                Article
                238930
                10.2147/CIA.S238930
                7014961
                32103918
                87eb5226-91f8-4c2a-b1e0-f6edf08230dd
                © 2020 Macek et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 16 November 2019
                : 15 January 2020
                Page count
                Figures: 3, Tables: 2, References: 37, Pages: 9
                Funding
                The research Project PONS - Polish-Norwegian Study (Ref. No PNRF-228- AI-1/07), named “Establishment of the infrastructure to facilitate studies on the health status of Poland’s population”, was financed out of the Polish-Norwegian Foundation Research Fund. The Project is supported under the programme established by the Minister of Science and Higher Education - “Regional Initiative of Excellence” - spanning the period 2019–2022; Project No 024/RID/ 2018/19; amount of financing allocated: PLN 11999 000.00.
                Categories
                Original Research

                Health & Social care
                age,cardiovascular disease,risk factors,prevalence,public health
                Health & Social care
                age, cardiovascular disease, risk factors, prevalence, public health

                Comments

                Comment on this article