2
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Harnessing the Genomic Landscape of the Small Renal Mass to Guide Clinical Management

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small renal masses (SRMs; tumors <4 cm) encompass a diagnostic and therapeutic challenge. Genomic profiling has the potential to improve risk stratification and personalize treatment selection. Herein, we review the evidence regarding the utility, challenges, and potential implications of genomic profiling in the management of SRMs. Pertinent publications available on PubMed database pertaining to kidney cancer, tumor size, genomics, and clinical management were reviewed. Compared with larger tumors, SRMs range from benign to lethal, necessitating strategies for improved treatment selection. Recent advances in the molecular characterization of renal cell carcinoma have improved our understanding of the disease; however, utility of these tools for the management of SRMs is less clear. While intratumoral heterogeneity (ITH) reduces the accuracy and reliability of sequencing, relative genomic uniformity of SRMs somewhat lessens the impact of ITH. Therefore, renal mass biopsy of SRMs represents an appealing opportunity to evaluate how incorporation of molecular profiles may improve management strategies. Ongoing research into the genomic landscape of SRMs has advanced our understanding of the spectrum of disease aggressiveness and may hold promise in matching disease biology to treatment intensity. Small renal masses are a clinical challenge, as they range from benign to lethal. Genomic profiling may eventually improve treatment selection, but more research is needed.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics, 2019

          Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2015, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2016, were collected by the National Center for Health Statistics. In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2006-2015) was stable in women and declined by approximately 2% per year in men, whereas the cancer death rate (2007-2016) declined annually by 1.4% and 1.8%, respectively. The overall cancer death rate dropped continuously from 1991 to 2016 by a total of 27%, translating into approximately 2,629,200 fewer cancer deaths than would have been expected if death rates had remained at their peak. Although the racial gap in cancer mortality is slowly narrowing, socioeconomic inequalities are widening, with the most notable gaps for the most preventable cancers. For example, compared with the most affluent counties, mortality rates in the poorest counties were 2-fold higher for cervical cancer and 40% higher for male lung and liver cancers during 2012-2016. Some states are home to both the wealthiest and the poorest counties, suggesting the opportunity for more equitable dissemination of effective cancer prevention, early detection, and treatment strategies. A broader application of existing cancer control knowledge with an emphasis on disadvantaged groups would undoubtedly accelerate progress against cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing

            Intratumor heterogeneity may foster tumor evolution and adaptation and hinder personalized-medicine strategies that depend on results from single tumor-biopsy samples. To examine intratumor heterogeneity, we performed exome sequencing, chromosome aberration analysis, and ploidy profiling on multiple spatially separated samples obtained from primary renal carcinomas and associated metastatic sites. We characterized the consequences of intratumor heterogeneity using immunohistochemical analysis, mutation functional analysis, and profiling of messenger RNA expression. Phylogenetic reconstruction revealed branched evolutionary tumor growth, with 63 to 69% of all somatic mutations not detectable across every tumor region. Intratumor heterogeneity was observed for a mutation within an autoinhibitory domain of the mammalian target of rapamycin (mTOR) kinase, correlating with S6 and 4EBP phosphorylation in vivo and constitutive activation of mTOR kinase activity in vitro. Mutational intratumor heterogeneity was seen for multiple tumor-suppressor genes converging on loss of function; SETD2, PTEN, and KDM5C underwent multiple distinct and spatially separated inactivating mutations within a single tumor, suggesting convergent phenotypic evolution. Gene-expression signatures of good and poor prognosis were detected in different regions of the same tumor. Allelic composition and ploidy profiling analysis revealed extensive intratumor heterogeneity, with 26 of 30 tumor samples from four tumors harboring divergent allelic-imbalance profiles and with ploidy heterogeneity in two of four tumors. Intratumor heterogeneity can lead to underestimation of the tumor genomics landscape portrayed from single tumor-biopsy samples and may present major challenges to personalized-medicine and biomarker development. Intratumor heterogeneity, associated with heterogeneous protein function, may foster tumor adaptation and therapeutic failure through Darwinian selection. (Funded by the Medical Research Council and others.).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future

              Intratumor heterogeneity, which fosters tumor evolution, is a key challenge in cancer medicine. Here, we review data and technologies that have revealed intra-tumor heterogeneity across cancer types and the dynamics, constraints, and contingencies inherent to tumor evolution. We emphasize the importance of macro-evolutionary leaps, often involving large-scale chromosomal alterations, in driving tumor evolution and metastasis and consider the role of the tumor microenvironment in engendering heterogeneity and drug resistance. We suggest that bold approaches to drug development, harnessing the adaptive properties of the immune-microenvironment while limiting those of the tumor, combined with advances in clinical trial-design, will improve patient outcome.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                European Urology Focus
                European Urology Focus
                Elsevier BV
                24054569
                November 2019
                November 2019
                : 5
                : 6
                : 949-957
                Article
                10.1016/j.euf.2019.04.011
                6815690
                31040082
                87f147e8-8dab-42ee-9125-ff936b6ecf0c
                © 2019

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article