3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Antibodies to macrophage inflammatory protein-1β in preoptic area of rats fail to suppress PGE2 hyperthermia

      , , , , ,
      Brain Research
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Microglia: intrinsic immuneffector cell of the brain.

          Microglia form a regularly spaced network of resident glial cells throughout the central nervous system (CNS). They are morphologically, immunophenotypically and functionally related to cells of the monocyte/macrophage lineage. In the ultimate vicinity of the blood-brain barrier two specialized subsets of macrophages/microglia can be distinguished: firstly, perivascular cells which are enclosed within the basal lamina and secondly juxtavascular microglia which make direct contact with the parenchymal side of the CNS vascular basal lamina but represent true intraparenchymal resident microglia. Bone marrow chimera experiments indicates that a high percentage of the perivascular cells undergoes replacement with bone marrow-derived cells. In contrast, juxtavascular microglia like other resident microglia form a highly stable pool of CNS cells with extremely little turnover with the bone marrow compartment. Both the perivascular cells and the juxtavascular microglia play an important role in initiating and maintaining CNS autoimmune injury due to their strategic localization at a site close to the blood-brain barrier, their rapid inducibility for MHC class II antigens and their potential scavenger role as phagocytic cells. The constantly replaced pool of perivascular cells probably represents an entry route by which HIV gets access to the brain. Microglia are the first cell type to respond to several types of CNS injury. Microglial activation involves a stereotypic pattern of cellular responses, such as proliferation, increased or de-novo expression of immunomolecules, recruitment to the site of injury and functional changes, e.g., the release of cytotoxic and/or inflammatory mediators. In addition, microglia have a strong antigen presenting function and a pronounced cytotoxic function. Microglial activation is a graded response, i.e., microglia only transform into intrinsic brain phagocytes under conditions of neuronal and or synaptic/terminal degeneration. In T-cell-mediated autoimmune injury of the nervous system, microglial activation follows these lines and occurs at an early stage of disease development. In experimental autoimmune encephalomyelitis (EAE), microglia proliferate vigorously, show a strong expression of MHC class I and II antigens, cell adhesion molecules, release of reactive oxygen intermediates and inflammatory cytokines and transform into phagocytic cells. Due to their pronounced antigen presenting function in vitro, activated microglia rather than astrocytes or endothelial cells are the candidates as intrinsic antigen presenting cel of the brain. In contrast to microglia, astrocytes react with a delay, appear to encase morphologically the inflammatory lesion and may be instrumental in downregulating the T-cell-mediated immune injury by inducing T-cell apoptosis.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties

            We report the identification and purification of a new inflammatory monokine synthesized by the macrophage tumor cell line RAW 264.7 in response to endotoxin. This monokine, which we term "macrophage inflammatory protein" (MIP), is a doublet with an apparent molecular mass of approximately 8,000 daltons on SDS-PAGE but forms aggregates of greater than 2 x 10(6) daltons as assessed by gel filtration. Partial NH2-terminal amino acid sequence data reveal no significant homology with any previously described protein. Although the monokine is anionic under physiological conditions, it is one of two major macrophage- secreted proteins that bind to heparin at high salt concentrations. At 100 ng/ml or greater, MIP is chemokinetic for human polymorphonuclear cells and triggers hydrogen peroxide production. Subcutaneous injection of 10 ng or greater of MIP into footpads of C3H/HeJ mice elicits an inflammatory response, characterized by neutrophil infiltration. These findings suggest that MIP is an endogenous mediator that may play a role in the host responses that occur during endotoxemia and other inflammatory events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta

              A number of macrophage-derived mediators have been implicated in the vascular changes of inflammation. We recently reported the isolation of a novel monokine, macrophage inflammatory protein 1 (MIP-1), which causes local inflammatory responses in vivo, and induces superoxide production by neutrophils in vitro. Purified native MIP-1 comprises two peptides with very similar physical characteristics. We report here the resolution of MIP-1 into component peptides by SDS-hydroxylapatite chromatography, and compare the NH2-terminal sequences of the two peptides, now referred to as MIP-1 alpha and MIP-1 beta. A synthetic oligonucleotide probe pool corresponding to the NH2-terminal amino acid sequence of MIP-1 beta was used to isolate a cDNA clone containing its coding sequence. The sequence codes for a 109 amino acid-long polypeptide, of which 69 amino acids correspond to the mature product. Comparison of this MIP-1 beta cDNA with our previously cloned MIP-1 alpha sequence reveals that the MIP-1 peptides, members of a growing family of potential inflammatory mediators, are distinct but highly homologous (58.9% sequence identity) products of different genes.
                Bookmark

                Author and article information

                Journal
                Brain Research
                Brain Research
                Elsevier BV
                00068993
                February 1997
                February 1997
                : 748
                : 1-2
                : 245-249
                Article
                10.1016/S0006-8993(96)01362-5
                87fbff14-ef95-4b1a-818d-d83621167139
                © 1997

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article