6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Initial results from the Sherbrooke avalanche photodiode positron tomograph

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The design and physical characteristics of a small animal positron emission tomograph.

          A small diameter positron emission tomography, designed specifically for small animal studies, was constructed from existing, commercially available, bismuth germanate (BGO) detectors and electronics. The scanner consists of 16 BGO detector blocks arranged to give a tomograph with a diameter of 115 mm and an axial field of view (FOV) of 50 mm. Each block is cut to produce eight (axial) by seven (radial) individual detector elements. The absence of interplane septa enables the acquisition of 3D data sets consisting of 64 sinograms. A 2D data set of 15 sinograms, consisting of eight direct and seven adjacent cross planes, can be extracted from the 3D data set. Images are reconstructed from the 2D sinograms using a conventional filtered backprojection algorithm. Two methods of normalization were investigated, based on either a rotating 68Ge rod source, or a uniform 68Ge plane source, with a uniform cylindrical 18F phantom. Attenuation of the emitted photons was estimated using a rotating 68Ge rod source. The transaxial resolution of the tomograph was measured as 2.3 mm full width at half maximum (FWHM) and 5.6 mm full width at tenth maximum (FWTM) at the centre of the FOV, degrading to 6.6 mm (radial) and 4.4 mm (tangential) FWHM and 10.4 mm (radial) and 14.4 mm (tangential) FWTM at 40.0 mm from the centre of the FOV. The axial slice width was 4.3 mm FWHM, 10.3 mm FWTM at the centre of the transaxial field of view and 4.4 mm FWHM, 10.6 mm FWTM at 20.0 mm from the centre of the FOV. A scatter fraction of 31.0% was measured at 250-850 keV, for an 18F line source centred in a 60 mm diameter, water-filled phantom, reducing to 20.4% and 13.8% as the lower energy discrimination was increased to 380 keV and 450 keV, respectively. The count rate performance was measured using a noise equivalent count rate method, and the linearity of the dead time correction was confirmed over the count rates encountered during routine scanning. In 2D mode, the absolute sensitivity of the tomograph was measured as 9948 counts s-1 MBq-1 at 250-850 keV, 8284 counts s-1 MBq-1 at 380-850 keV and 6280 counts s-1 MBq-1 at 450-850 keV.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Design and engineering aspects of a high resolution positron tomograph for small animal imaging

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitation of carbon-11-labeled raclopride in rat striatum using positron emission tomography.

              Using conventional autoradiographic and tissue counting techniques, the experimental quantitation of in vivo kinetics of prospective or established radioligands for PET is animal and labour intensive. The present study tested the feasibility of using PET itself to quantitate the specific binding of [11C]raclopride to rat striatum and to study the effects of experimental manipulation of endogenous dopamine on binding parameters. Carbon-11-labeled raclopride was given i.v. to anaesthetised rats, positioned in a PET camera and dynamic emission scans acquired over 60 min. Time-activity curves were generated for selected regions of interest, representing striatum and cerebellum and the striatal data fitted to a compartmental model, using cerebellum as the input function, thus circumventing the need for individual metabolite-corrected plasma curves. In control rats, the binding potential (BP), defined as the ratio of the rate constants for transfer from "free to bound" and "bound to free" compartments, was of the order of 0.6. This was reduced threefold by predosing with nonradioactive raclopride. Increasing extracellular dopamine levels by predosing with d-amphetamine resulted in a significant decrease in BP whereas reducing extracellular dopamine by predosing with gamma-butyrolactone caused a significant increase. Thus, despite the limitation in spatial resolution of PET, specific binding of raclopride could be assessed from regional time-activity curves from individual rats. The system was sufficiently sensitive that changes in BP could be detected following modulation of endogenous dopamine levels, a finding of potential relevance to the interpretation of clinical PET data.
                Bookmark

                Author and article information

                Journal
                IEEE Transactions on Nuclear Science
                IEEE Trans. Nucl. Sci.
                Institute of Electrical and Electronics Engineers (IEEE)
                00189499
                June 1996
                : 43
                : 3
                : 1952-1957
                Article
                10.1109/23.507252
                8808a4e7-e44e-4be0-8ed2-8adf43e42a7e
                History

                Comments

                Comment on this article