26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenotypic and Genotypic Characteristics of Small Colony Variants and Their Role in Chronic Infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Small colony variant (SCV) bacteria arise spontaneously within apparently homogeneous microbial populations, largely in response to environmental stresses, such as antimicrobial treatment. They display unique phenotypic characteristics conferred in part by heritable genetic changes. Characteristically slow growing, SCVs comprise a minor proportion of the population from which they arise but persist by virtue of their inherent resilience and host adaptability. Consequently, SCVs are problematic in chronic infection, where antimicrobial treatment is administered during the acute phase of infection but fails to eradicate SCVs, which remain within the host causing recurrent or chronic infection. This review discusses some of the phenotypic and genotypic changes that enable SCVs to successfully proliferate within the host environment as potential pathogens and strategies that could ameliorate the resolution of infection where SCVs are present.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          The genetic theory of adaptation: a brief history.

          Theoretical studies of adaptation have exploded over the past decade. This work has been inspired by recent, surprising findings in the experimental study of adaptation. For example, morphological evolution sometimes involves a modest number of genetic changes, with some individual changes having a large effect on the phenotype or fitness. Here I survey the history of adaptation theory, focusing on the rise and fall of various views over the past century and the reasons for the slow development of a mature theory of adaptation. I also discuss the challenges that face contemporary theories of adaptation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of bacterial biofilms in chronic infections.

            Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial aggregation is the default mode, and that subsequent biofilm development progresses by adaptation to nutritional and environmental conditions. I will make a series of correlations to highlight the most important aspects of biofilms from my perspective, and to determine what can be deduced from the past decades of biofilm research. I will try to bridge in vitro and in vivo research and propose methods for studying biofilms based on this knowledge. I will compare how bacterial biofilms exist in stable ecological habitats and opportunistically in unstable ecological habitats, such as infections. Bacteria have a similar lifestyle (the biofilm) in both habitats, but the fight for survival and supremacy is different. On the basis of this comparison, I will hypothesize how chronic biofilm infections are initiated and how bacteria live together in these infections. Finally, I will discuss different aspects of biofilm infection diagnosis. Hopefully, this survey of current knowledge and my proposed guidelines will provide the basis and inspiration for more research, improved diagnostics, and treatments for well-known biofilm infections and any that may be identified in the future. © 2013 APMIS Published by Blackwell Publishing Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutation as a stress response and the regulation of evolvability.

              Our concept of a stable genome is evolving to one in which genomes are plastic and responsive to environmental changes. Growing evidence shows that a variety of environmental stresses induce genomic instability in bacteria, yeast, and human cancer cells, generating occasional fitter mutants and potentially accelerating adaptive evolution. The emerging molecular mechanisms of stress-induced mutagenesis vary but share telling common components that underscore two common themes. The first is the regulation of mutagenesis in time by cellular stress responses, which promote random mutations specifically when cells are poorly adapted to their environments, i.e., when they are stressed. A second theme is the possible restriction of random mutagenesis in genomic space, achieved via coupling of mutation-generating machinery to local events such as DNA-break repair or transcription. Such localization may minimize accumulation of deleterious mutations in the genomes of rare fitter mutants, and promote local concerted evolution. Although mutagenesis induced by stresses other than direct damage to DNA was previously controversial, evidence for the existence of various stress-induced mutagenesis programs is now overwhelming and widespread. Such mechanisms probably fuel evolution of microbial pathogenesis and antibiotic-resistance, and tumor progression and chemotherapy resistance, all of which occur under stress, driven by mutations. The emerging commonalities in stress-induced-mutation mechanisms provide hope for new therapeutic interventions for all of these processes.
                Bookmark

                Author and article information

                Journal
                Microbiol Insights
                Microbiol Insights
                Microbiology Insights
                Microbiology Insights
                Libertas Academica
                1178-6361
                2015
                22 September 2015
                : 8
                : 15-23
                Affiliations
                [1 ]Department of Biomedical Science, Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
                [2 ]School of Life Sciences, University of Warwick, Coventry, UK.
                [3 ]Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
                Author notes
                Article
                mbi-8-2015-015
                10.4137/MBI.S25800
                4581789
                26448688
                880e3f96-eaf9-4f30-85fe-4dafa7a65171
                © 2015 the author(s), publisher and licensee Libertas Academica Ltd.

                This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

                History
                : 08 June 2015
                : 09 August 2015
                : 13 August 2015
                Categories
                Review

                auxotrophy,adhesion,intracellular,biofilm,phenotype
                auxotrophy, adhesion, intracellular, biofilm, phenotype

                Comments

                Comment on this article