2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Toward on-chip acceleration of the backpropagation algorithm using nonvolatile memory

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Training and Operation of an Integrated Neuromorphic Network Based on Metal-Oxide Memristors

            Despite all the progress of semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. One of the most prospective candidates to provide comparable complexity, while operating much faster and with manageable power dissipation, are so-called CrossNets based on hybrid CMOS/memristor circuits. In these circuits, the usual CMOS stack is augmented with one or several crossbar layers, with adjustable two-terminal memristors at each crosspoint. Recently, there was a significant progress in improvement of technology of fabrication of such memristive crossbars and their integration with CMOS circuits, including first demonstrations of their vertical integration. Separately, there have been several demonstrations of discrete memristors as artificial synapses for neuromorphic networks. Very recently such experiments were extended to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence the prospects of their scaling are less impressive than those of metal-oxide memristors, whose nonlinear I-V curves enable transistor-free operation. Here we report the first experimental implementation of a transistor-free metal-oxide memristor crossbar with device variability lowered sufficiently to demonstrate a successful operation of a simple integrated neural network, a single layer-perceptron. The network could be taught in situ using a coarse-grain variety of the delta-rule algorithm to perform the perfect classification of 3x3-pixel black/white images into 3 classes. We believe that this demonstration is an important step towards the implementation of much larger and more complex memristive neuromorphic networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations

              In recent years, deep neural networks (DNN) have demonstrated significant business impact in large scale analysis and classification tasks such as speech recognition, visual object detection, pattern extraction, etc. Training of large DNNs, however, is universally considered as time consuming and computationally intensive task that demands datacenter-scale computational resources recruited for many days. Here we propose a concept of resistive processing unit (RPU) devices that can potentially accelerate DNN training by orders of magnitude while using much less power. The proposed RPU device can store and update the weight values locally thus minimizing data movement during training and allowing to fully exploit the locality and the parallelism of the training algorithm. We evaluate the effect of various RPU device features/non-idealities and system parameters on performance in order to derive the device and system level specifications for implementation of an accelerator chip for DNN training in a realistic CMOS-compatible technology. For large DNNs with about 1 billion weights this massively parallel RPU architecture can achieve acceleration factors of 30, 000 × compared to state-of-the-art microprocessors while providing power efficiency of 84, 000 GigaOps∕s∕W. Problems that currently require days of training on a datacenter-size cluster with thousands of machines can be addressed within hours on a single RPU accelerator. A system consisting of a cluster of RPU accelerators will be able to tackle Big Data problems with trillions of parameters that is impossible to address today like, for example, natural speech recognition and translation between all world languages, real-time analytics on large streams of business and scientific data, integration, and analysis of multimodal sensory data flows from a massive number of IoT (Internet of Things) sensors.
                Bookmark

                Author and article information

                Journal
                IBM Journal of Research and Development
                IBM J. Res. & Dev.
                IBM
                0018-8646
                0018-8646
                July 2017
                July 1 2017
                : 61
                : 4/5
                : 11:1-11:11
                Article
                10.1147/JRD.2017.2716579
                8810a155-0c44-47f0-8217-3505111dc86c
                © 2017
                History

                Comments

                Comment on this article