16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of COPD (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on pathophysiological processes underlying Chronic Obstructive Pulmonary Disease (COPD) interventions, patient focused education, and self-management protocols. Sign up for email alerts here.

      39,063 Monthly downloads/views I 2.893 Impact Factor I 5.2 CiteScore I 1.16 Source Normalized Impact per Paper (SNIP) I 0.804 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sputum Vitamin D Binding Protein (VDBP) GC1S/1S Genotype Predicts Airway Obstruction: A Prospective Study in Smokers with COPD

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The vitamin D binding protein (VDBP, also known as GC-globulin) and vitamin D deficiency have been associated with chronic obstructive pulmonary disease (COPD). rs7041 and rs4588 are two single nucleotide polymorphisms of the VDBP gene, including three common allelic variants (GC1S, GC1F and GC2). Previous studies primarily assessed the serum levels of vitamin D and VDBP in COPD. However, less is known regarding the impact of the local release of VDBP on COPD lung function. Thus, we examined the association of sputum and plasma VDBP with lung function at baseline and at four years, and examined potential genetic polymorphism interactions.

          Methods

          The baseline levels of sputum VDBP, plasma VDBP and plasma 25-OH vitamin D, as well as the GC rs4588 and rs7041 genotypes, were assessed in a 4-year Finnish follow-up cohort (n = 233) of non-smokers, and smokers with and without COPD. The associations between the VDBP levels and the longitudinal decline of lung function were further analysed.

          Results

          High frequencies of the haplotypes in rs7041/rs4588 were homozygous GC1S/1S (42.5%). Higher sputum VDBP levels in stage I and stage II COPD were observed only in carriers with GC1S/1S genotype when compared with non-smokers (p = 0.034 and p = 0.002, respectively). Genotype multivariate regression analysis indicated that the baseline sputum VDBP and FEV1/FVC ratio at baseline independently predicted FEV1% at follow-up.

          Discussion and Conclusion

          The baseline sputum VDBP expression was elevated in smokers with COPD among individuals with the GC1S/1S genotype, and predicted follow-up airway obstruction. Our results suggest that the GC polymorphism should be considered when exploring the potential of VDBP as a biomarker for COPD.

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP).

          Human vitamin D binding protein (DBP) displays considerable polymorphism with 120 described alleles. Among these, three alleles are frequently observed, Gc 1F (pI 4.94-4.84), Gc 1S (pI 4.95-4.85) and Gc 2 (pI 5.1). Differences between these genetic forms of the protein in affinity for vitamin D metabolites have been detected by electrophoretic methods. The constant affinity (Ka) values determined in this study confirm these differences. The affinities of six rare variants were also examine. Those of the DBP genetic forms to the vitamin D derivatives 25-OH-D3 and 1,25-(OH)2-D3 seem to be related to the isoelectric point of the proteins: a high affinity corresponding to a low isoelectric point. The Gc 1A9 and 1A11 mutants were associated with higher affinity for the vitamin D derivatives and the Gc 1C1 and 1C21 mutants were deficient.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Sputum induction

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vitamin D3 binding protein (group-specific component) is a precursor for the macrophage-activating signal factor from lysophosphatidylcholine-treated lymphocytes.

              A brief (30 min) treatment of mouse peritoneal cells (mixture of nonadherent lymphocytes and adherent macrophages) with 1-20 micrograms of lysophosphatidylcholine (lyso-PC) per ml in serum-supplemented RPMI medium 1640, followed by a 3-hr cultivation of the adherent cells alone, results in a greatly enhanced Fc receptor-mediated phagocytic activity of macrophages. This rapid process of macrophage activation was found to require a serum factor, the vitamin D3 binding protein (the human protein is known as group-specific component; Gc). Efficient activation of macrophages was achieved by using medium containing purified human Gc protein. Analysis of intercellular signal transmission among nonadherent (B and T) cells revealed that lyso-PC-treated B cells modify Gc protein to yield a proactivating factor, which can be converted by T cells to the macrophage-activating factor. This rapid generation process of the macrophage-activating factor was also demonstrated by stepwise incubation of Gc protein with lyso-PC-treated B-cell ghosts and untreated T-cell ghosts, suggesting that Gc protein is modified by preexisting membranous enzymes to yield the macrophage-activating factor. Incubation of Gc protein with a mixture of beta-galactosidase and sialidase efficiently generated the macrophage-activating factor. Stepwise incubation of Gc protein with B- or T-cell ghosts and sialidase or beta-galactosidase revealed that Gc protein is modified by beta-galactosidase of B cells and sialidase of T cells to yield the macrophage-activating factor. Administration to mice of a minute amount (4-10 pg per mouse) of in vitro, enzymatically generated macrophage-activating factor resulted in a greatly enhanced (3- to 7-fold) ingestion activity of macrophages.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                COPD
                copd
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove
                1176-9106
                1178-2005
                15 May 2020
                2020
                : 15
                : 1049-1059
                Affiliations
                [1 ]Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
                [2 ]Pulmonomics Group, Respiratory Medicine Unit, Department of Medicine & Centre for Molecular Medicine, Karolinska Institute , Stockholm, Sweden
                [3 ]Proteomics Core Facility, Biocentre Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu , Oulu, Finland
                [4 ]Department of Pulmonary Medicine, Lapland Central Hospital , Rovaniemi, Finland
                [5 ]Medical Informatics and Statistics Group, University of Oulu , Oulu, Finland
                [6 ]Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima, Japan
                Author notes
                Correspondence: Jing Gao Heart and Lung Centre, Department of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital , FinlandTel +358417071559 Email jing.gao@helsinki.fi, Helsinki
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0003-2189-5010
                http://orcid.org/0000-0001-8881-0056
                http://orcid.org/0000-0003-0591-586X
                http://orcid.org/0000-0003-4922-5334
                http://orcid.org/0000-0002-1488-5183
                Article
                234464
                10.2147/COPD.S234464
                7237691
                32546996
                88117d46-fe3c-4d49-86a4-7f1b78aa4896
                © 2020 Gao et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 12 October 2019
                : 20 April 2020
                Page count
                Figures: 5, Tables: 4, References: 41, Pages: 11
                Categories
                Original Research

                Respiratory medicine
                vitamin d binding protein,vdbp,genotype,copd,prospective study,sputum
                Respiratory medicine
                vitamin d binding protein, vdbp, genotype, copd, prospective study, sputum

                Comments

                Comment on this article