19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      RE-MuSiC: a tool for multiple sequence alignment with regular expression constraints

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RE-MuSiC is a web-based multiple sequence alignment tool that can incorporate biological knowledge about structure, function, or conserved patterns regarding the sequences of interest. It accepts amino acid or nucleic acid sequences and a set of constraints as inputs. The constraints are pattern descriptions, instead of exact positions of fragments to be aligned together. The output is an alignment where for each pattern (constraint), an occurrence on each sequence can be found aligned together with those on the other sequences, in a manner that the overall alignment is optimized. Its predecessor, MuSiC, has been found useful by researchers since its release in 2004. However, it is noticed in applications that the pattern formulation adopted in MuSiC, namely, plain strings allowing mismatches, is not expressive and flexible enough. The constraint formulation adopted in RE-MuSiC is therefore enhanced to be regular expressions, which is convenient in expressing many biologically significant patterns like those collected in the PROSITE database, or structural consensuses that often involve variable ranges between conserved parts. Experiments demonstrate that RE-MuSiC can be used to help predict important residues and locate phylogenetically conserved structural elements. RE-MuSiC is available on-line at http://140.113.239.131/RE-MUSIC.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment.

          The performance and time complexity of an improved version of the segment-to-segment approach to multiple sequence alignment is discussed. In this approach, alignments are composed from gap-free segment pairs, and the score of an alignment is defined as the sum of so-called weights of these segment pairs. A modification of the weight function used in the original version of the alignment program DIALIGN has two important advantages: it can be applied to both globally and locally related sequence sets, and the running time of the program is considerably improved. The time complexity of the algorithm is discussed theoretically, and the program running time is reported for various test examples. The program is available on-line at the Bielefeld University Bioinformatics Server (BiBiServ) http://bibiserv.TechFak.Uni-Bielefeld.DE/dial ign/
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A workbench for multiple alignment construction and analysis.

            Multiple sequence alignment can be a useful technique for studying molecular evolution, as well as for analyzing relationships between structure or function and primary sequence. We have developed for this purpose an interactive program, MACAW (Multiple Alignment Construction and Analysis Workbench), that allows the user to construct multiple alignments by locating, analyzing, editing, and combining "blocks" of aligned sequence segments. MACAW incorporates several novel features. (1) Regions of local similarity are located by a new search algorithm that avoids many of the limitations of previous techniques. (2) The statistical significance of blocks of similarity is evaluated using a recently developed mathematical theory. (3) Candidate blocks may be evaluated for potential inclusion in a multiple alignment using a variety of visualization tools. (4) A user interface permits each block to be edited by moving its boundaries or by eliminating particular segments, and blocks may be linked to form a composite multiple alignment. No completely automatic program is likely to deal effectively with all the complexities of the multiple alignment problem; by combining a powerful similarity search algorithm with flexible editing, analysis and display tools, MACAW allows the alignment strategy to be tailored to the problem at hand.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent improvements to the PROSITE database.

              The PROSITE database consists of a large collection of biologically meaningful signatures that are described as patterns or profiles. Each signature is linked to documentation that provides useful biological information on the protein family, domain or functional site identified by the signature. The PROSITE web page has been redesigned and several tools have been implemented to help the user discover new conserved regions in their own proteins and to visualize domain arrangements. We also introduced the facility to search PDB with a PROSITE entry or a user's pattern and visualize matched positions on 3D structures. The latest version of PROSITE (release 18.17 of November 30, 2003) contains 1676 entries. The database is accessible at http://www.expasy.org/prosite/.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                July 2007
                8 May 2007
                8 May 2007
                : 35
                : Web Server issue
                : W639-W644
                Affiliations
                1Department of Computer Science, National Tsing Hua University, Hsinchu 300, Taiwan, 2Institute of Bioinformatics, National Chiao Tung University, Hsinchu 300, Taiwan and 3Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
                Author notes
                *To whom correspondence should be addressed. +886-3-5712121+886-3-5729288 cllu@ 123456mail.nctu.edu.tw
                Article
                10.1093/nar/gkm275
                1933182
                17488842
                881abb33-1d39-49ed-b5f0-0146dcde93d5
                © 2007 The Author(s)

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 31 January 2007
                : 6 April 2007
                : 11 April 2007
                Categories
                Articles

                Genetics
                Genetics

                Comments

                Comment on this article