12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A supramolecular polymer network gel with stimuli-responsiveness constructed by orthogonal metal ion coordination and pillar[5]arene-based host–guest recognition

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel external stimuli-responsive supramolecular polymer network gel was fabricated by orthogonal Ag-coordination and pillar[5]arene-based host–guest interactions.

          Abstract

          A novel external stimuli-responsive supramolecular metallogel was fabricated by orthogonal Ag-coordination and pillar[5]arene-based host–guest molecular recognition.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host-guest property.

          Condensation of 1,4-dimethoxybenzene (DMB) with paraformaldehyde in the presence of BF3.O(C2H5)2 gave novel para-bridged pentacyclic pillar DMB (DMpillar[5]arene). Moreover, para-bridged pentacyclic hydroquinone (pillar[5]arene) was prepared. Pillar[5]arene formed 1:1 host-guest complexes with dialkyl viologen and alkyl pyridinium derivatives. However, pillar[5]arene did not form complexes with the diadamantyl viologen derivative since a bulky adamantyl group was unable to thread the cavity of pillar[5]arene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pillararenes, a new class of macrocycles for supramolecular chemistry.

            Because of the importance of novel macrocycles in supramolecular science, interest in the preparation of these substances has grown considerably. However, the discovery of a new class of macrocycles presents challenges because of the need for routes to further functionalization of these molecules and good host-guest complexation. Furthermore, useful macrocylic hosts must be easily synthesized in large quantities. With these issues in mind, the recently discovered pillararenes attracted our attention. These macrocycles contain hydroquinone units linked by methylene bridges at para positions. Although the composition of pillararenes is similar to that of calixarenes, they have different structural characteristics. One conformationally stable member of this family is pillar[5]arene, which consists of five hydroquinone units. The symmetrical pillar architecture and electron-donating cavities of these macrocycles are particularly intriguing and afford them with some special and interesting physical, chemical, and host-guest properties. Due to these features and their easy accessibility, pillararenes, especially pillar[5]arenes, have been actively studied and rapidly developed within the last 4 years. In this Account, we provide a comprehensive overview of pillararene chemistry, summarizing our results along with related studies from other researchers. We describe strategies for the synthesis, isomerization, and functionalization of pillararenes. We also discuss their macrocyclic cavity sizes, their host-guest properties, and their self-assembly into supramolecular polymers. The hydroxyl groups of the pillararenes can be modified at all positions or selectively on one or two positions. Through a variety of functionalizations, researchers have developed many pillararene derivatives that exhibit very interesting host-guest properties both in organic solvents and in aqueous media. Guest molecules include electron acceptors such as viologen derivatives and (bis)imidazolium cations and alkyl chain derivatives such as n-hexane, alkanediamines, n-octyltrimethyl ammonium, and neutral bis(imidazole) derivatives. These host-guest studies have led to the fabrication of (pseudo)rotaxanes or poly(pseudo)rotaxanes, supramolecular dimers or polymers, artificial transmembrane proton channels, fluorescent sensors, and other functional materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Coordination assemblies from a Pd(II)-cornered square complex.

              The [enPd(II)]2+ (en = ethylenediamine) unit has emerged as a versatile building block in molecular self-assembly. In particular, the 90 degrees coordination angle of the metal has been judiciously used in the design of new discrete two- and three-dimensional structures. Our last 15 years of work with the Pd(II)-cornered unit is summarized in this Account, from the spontaneous formation of a Pd4 square metal complex to a family of architectures such as cages, bowls, boxes, tubes, catenanes, and spheres.
                Bookmark

                Author and article information

                Journal
                PCOHC2
                Polymer Chemistry
                Polym. Chem.
                Royal Society of Chemistry (RSC)
                1759-9954
                1759-9962
                2017
                2017
                : 8
                : 25
                : 3783-3787
                Article
                10.1039/C7PY00656J
                881c42d9-c33f-4909-81d3-7f656c0ca9f2
                © 2017
                History

                Comments

                Comment on this article