107
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transglutaminase is essential for IgA nephropathy development acting through IgA receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transglutaminase 2 is required for the development of IgA nephropathy.

          Abstract

          IgA nephropathy (IgAN) is a common cause of renal failure worldwide. Treatment is limited because of a complex pathogenesis, including unknown factors favoring IgA1 deposition in the glomerular mesangium. IgA receptor abnormalities are implicated, including circulating IgA–soluble CD89 (sCD89) complexes and overexpression of the mesangial IgA1 receptor, TfR1 (transferrin receptor 1). Herein, we show that although mice expressing both human IgA1 and CD89 displayed circulating and mesangial deposits of IgA1–sCD89 complexes resulting in kidney inflammation, hematuria, and proteinuria, mice expressing IgA1 only displayed endocapillary IgA1 deposition but neither mesangial injury nor kidney dysfunction. sCD89 injection into IgA1-expressing mouse recipients induced mesangial IgA1 deposits. sCD89 was also detected in patient and mouse mesangium. IgA1 deposition involved a direct binding of sCD89 to mesangial TfR1 resulting in TfR1 up-regulation. sCD89–TfR1 interaction induced mesangial surface expression of TGase2 (transglutaminase 2), which in turn up-regulated TfR1 expression. In the absence of TGase2, IgA1–sCD89 deposits were dramatically impaired. These data reveal a cooperation between IgA1, sCD89, TfR1, and TGase2 on mesangial cells needed for disease development. They demonstrate that TGase2 is responsible for a pathogenic amplification loop facilitating IgA1–sCD89 deposition and mesangial cell activation, thus identifying TGase2 as a target for therapeutic intervention in this disease.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Transglutaminases: crosslinking enzymes with pleiotropic functions.

          Blood coagulation, skin-barrier formation, hardening of the fertilization envelope, extracellular-matrix assembly and other important biological processes are dependent on the rapid generation of covalent crosslinks between proteins. These reactions--which are catalysed by transglutaminases--endow the resulting supramolecular structure with extra rigidity and resistance against proteolytic degradation. Some transglutaminases function as molecular switches in cytoskeletal scaffolding and modulate protein-protein interactions. Having knowledge of these enzymes is essential for understanding the aetiologies of diverse hereditary diseases of the blood and skin, and various autoimmune, inflammatory and degenerative conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            IgA nephropathy.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IgA Fc receptors.

              The IgA receptor family comprises a number of surface receptors including the polymeric Ig receptor involved in epithelial transport of IgA/IgM, the myeloid specific IgA Fc receptor (FcalphaRI or CD89), the Fcalpha/muR, and at least two alternative IgA receptors. These are the asialoglycoprotein receptor and the transferrin receptor, which have been implicated in IgA catabolism, and tissue IgA deposition. In this review we focus on the biology of FcalphaRI (CD89). FcalphaRI is expressed on neutrophils, eosinophils, monocytes/macrophages, dendritic cells, and Kupffer cells. This receptor represents a heterogeneously glycosylated transmembrane protein that binds both IgA subclasses with low affinity. A single gene encoding FcalphaRI has been isolated, which is located within the leukocyte receptor cluster on chromosome 19. The FcalphaRI alpha chain lacks canonical signal transduction domains but can associate with the FcR gamma-chain that bears an activation motif (ITAM) in the cytoplasmic domain, allowing activatory functions. FcalphaRI expressed alone mediates endocytosis and recyling of IgA. No FcalphaRI homologue has been defined in the mouse, and progress in defining the in vivo role of FcalphaRI has been made using human FcalphaRI transgenic (Tg) mice. FcalphaRI-Tg mice demonstrated FcalphaRI expression on Kupffer cells and so defined a key role for the receptor in mucosal defense. The receptor functions as a second line of antibacterial defense involving serum IgA rather than secretory IgA. Studies in FcalphaRI-Tg mice, furthermore, defined an essential role for soluble FcalphaRI in the development of IgA nephropathy by formation of circulating IgA-FcalphaRI complexes. Finally, recent work points out a role for human IgA in treatment of infectious and neoplastic diseases.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                9 April 2012
                : 209
                : 4
                : 793-806
                Affiliations
                [1 ]Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 699, Paris 75870, France
                [2 ]Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, Université Paris Diderot, Sorbonne Paris Cité, Paris 75018, France
                [3 ]Centre National de la Recherche Scientifique Unité Mixte de Recherche 6101, Université de Limoges, Limoges 87000, France
                [4 ]Proteopole, Institut Pasteur, Paris 75015, France
                [5 ]Service de Néphrologie, Hôpital Saint-Louis, Paris 75010, France
                [6 ]Service d’Anatomo-Pathologie , [7 ]Service de Néphrologie , [8 ]Service de Physiologie et Explorations Fonctionnelles Multidisciplinaire , and [9 ]Service d’Immunologie, Assistance Publique de Paris, Hôpital Bichat-Claude Bernard, Paris 75870, France
                Author notes
                CORRESPONDENCE Renato C. Monteiro: renato.monteiro@ 123456inserm.fr

                L. Berthelot and C. Papista contributed equally to this paper.

                Article
                20112005
                10.1084/jem.20112005
                3328362
                22451718
                881f8aaa-12c1-400a-990c-b70e78ee3d3e
                © 2012 Berthelot et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 19 September 2011
                : 27 February 2012
                Categories
                Article

                Medicine
                Medicine

                Comments

                Comment on this article