Blog
About

14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Meristem size contributes to the robustness of phyllotaxis in Arabidopsis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          Phyllotaxis describes the regular position of leaves and flowers along plant stems. It is demonstrated that errors in this pattern can be related to meristem size and day length.

          Abstract

          Using the plant model Arabidopsis, the relationship between day length, the size of the shoot apical meristem, and the robustness of phyllotactic patterns were analysed. First, it was found that reducing day length leads to an increased meristem size and an increased number of alterations in the final positions of organs along the stem. Most of the phyllotactic defects could be related to an altered tempo of organ emergence, while not affecting the spatial positions of organ initiations at the meristem. A correlation was also found between meristem size and the robustness of phyllotaxis in two accessions (Col-0 and WS-4) and a mutant ( clasp-1), independent of growth conditions. A reduced meristem size in clasp-1 was even associated with an increased robustness of the phyllotactic pattern, beyond what is observed in the wild type. Interestingly it was also possible to modulate the robustness of phyllotaxis in these different genotypes by changing day length. To conclude, it is shown first that robustness of the phyllotactic pattern is not maximal in the wild type, suggesting that, beyond its apparent stereotypical order, the robustness of phyllotaxis is regulated. Secondly, a role for day length in the robustness of the phyllotaxis was also identified, thus providing a new example of a link between patterning and environment in plants. Thirdly, the experimental results validate previous model predictions suggesting a contribution of meristem size in the robustness of phyllotaxis via the coupling between the temporal sequence and spatial pattern of organ initiations.

          Related collections

          Most cited references 21

          • Record: found
          • Abstract: found
          • Article: not found

          Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis.

          Tissue mechanics have been shown to play a key role in the regulation of morphogenesis in animals [1-4] and may have an equally important role in plants [5-9]. The aerial organs of plants are formed at the shoot apical meristem following a specific phyllotactic pattern [10]. The initiation of an organ from the meristem requires a highly localized irreversible surface deformation, which depends on the demethylesterification of cell wall pectins [11]. Here, we used atomic force microscopy (AFM) to investigate whether these chemical changes lead to changes in tissue mechanics. By mapping the viscoelasticity and elasticity in living meristems, we observed increases in tissue elasticity, correlated with pectin demethylesterification, in primordia and at the site of incipient organs. Measurements of tissue elasticity at various depths showed that, at the site of incipient primordia, the first increases occurred in subepidermal tissues. The results support the following causal sequence of events: (1) demethylesterification of pectin is triggered in subepidermal tissue layers, (2) this contributes to an increase in elasticity of these layers-the first observable mechanical event in organ initiation, and (3) the process propagates to the epidermis during the outgrowth of the organ. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auxin regulates the initiation and radial position of plant lateral organs.

            Leaves originate from the shoot apical meristem, a small mound of undifferentiated tissue at the tip of the stem. Leaf formation begins with the selection of a group of founder cells in the so-called peripheral zone at the flank of the meristem, followed by the initiation of local growth and finally morphogenesis of the resulting bulge into a differentiated leaf. Whereas the mechanisms controlling the switch between meristem propagation and leaf initiation are being identified by genetic and molecular analyses, the radial positioning of leaves, known as phyllotaxis, remains poorly understood. Hormones, especially auxin and gibberellin, are known to influence phyllotaxis, but their specific role in the determination of organ position is not clear. We show that inhibition of polar auxin transport blocks leaf formation at the vegetative tomato meristem, resulting in pinlike naked stems with an intact meristem at the tip. Microapplication of the natural auxin indole-3-acetic acid (IAA) to the apex of such pins restores leaf formation. Similarly, exogenous IAA induces flower formation on Arabidopsis pin-formed1-1 inflorescence apices, which are blocked in flower formation because of a mutation in a putative auxin transport protein. Our results show that auxin is required for and sufficient to induce organogenesis both in the vegetative tomato meristem and in the Arabidopsis inflorescence meristem. In this study, organogenesis always strictly coincided with the site of IAA application in the radial dimension, whereas in the apical-basal dimension, organ formation always occurred at a fixed distance from the summit of the meristem. We propose that auxin determines the radial position and the size of lateral organs but not the apical-basal position or the identity of the induced structures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness.

              In plants, members of microRNA (miRNA) families are often predicted to target the same or overlapping sets of genes. It has thus been hypothesized that these miRNAs may act in a functionally redundant manner. This hypothesis is tested here by studying the effects of elimination of all three members of the MIR164 family from Arabidopsis. It was found that a loss of miR164 activity leads to a severe disruption of shoot development, in contrast to the effect of mutation in any single MIR164 gene. This indicates that these miRNAs are indeed functionally redundant. Differences in the expression patterns of the individual MIR164 genes imply, however, that redundancy among them is not complete, and that these miRNAs show functional specialization. Furthermore, the results of molecular and genetic analyses of miR164-mediated target regulation indicate that miR164 miRNAs function to control the transcript levels, as well as the expression patterns, of their targets, suggesting that they might contribute to developmental robustness. For two of the miR164 targets, namely CUP-SHAPED COTYLEDON1 (CUC1) and CUC2, we provide evidence for their involvement in the regulation of growth and show that their derepression in miR164 loss-of-function mutants is likely to account for most of the mutant phenotype.
                Bookmark

                Author and article information

                Journal
                J Exp Bot
                J. Exp. Bot
                jexbot
                exbotj
                Journal of Experimental Botany
                Oxford University Press (UK )
                0022-0957
                1460-2431
                March 2015
                11 December 2014
                11 December 2014
                : 66
                : 5
                : 1317-1324
                Affiliations
                1Laboratoire de Reproduction de développement des plantes, INRA, CNRS, ENS Lyon , UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon, Cedex 07, France
                2Laboratoire Joliot-Curie, Laboratoire de Physique, CNRS, ENS Lyon , UCB Lyon 1, Université de Lyon, 46 Allée d’Italie, 69364 Lyon, Cedex 07, France
                3Sainsbury Laboratory, University of Cambridge , Cambridge CB2 1NN, UK
                4Institut Universitaire de France, 103, boulevard Saint-Michel , 75005 Paris, France
                Author notes
                * Present address: IBENS, ENS , 75005 Paris, France.
                † To whom correspondence should be addressed. E-mail: olivier.hamant@ 123456ens-lyon.fr
                Article
                10.1093/jxb/eru482
                4339594
                25504644
                © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                Page count
                Pages: 8
                Categories
                Research Paper

                Plant science & Botany

                morphometry, meristem, patterning, phyllotaxis, plastochrone, robustness.

                Comments

                Comment on this article