7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organ‐level validation of a cross‐bridge cycling descriptor in a left ventricular finite element model: effects of ventricular loading on myocardial strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although detailed cell‐based descriptors of cross‐bridge cycling have been applied in finite element (FE) heart models to describe ventricular mechanics, these multiscale models have never been tested rigorously to determine if these descriptors, when scaled up to the organ‐level, are able to reproduce well‐established organ‐level physiological behaviors. To address this void, we here validate a left ventricular (LV) FE model that is driven by a cell‐based cross‐bridge cycling descriptor against key organ‐level heart physiology. The LV FE model was coupled to a closed‐loop lumped parameter circulatory model to simulate different ventricular loading conditions (preload and afterload) and contractilities. We show that our model is able to reproduce a linear end‐systolic pressure volume relationship, a curvilinear end‐diastolic pressure volume relationship and a linear relationship between myocardial oxygen consumption and pressure volume area. We also show that the validated model can predict realistic LV strain‐time profiles in the longitudinal, circumferential, and radial directions. The predicted strain‐time profiles display key features that are consistent with those measured in humans, such as having similar peak strains, time‐to‐peak‐strain, and a rapid change in strain during atrial contraction at late‐diastole. Our model shows that the myocardial strains are sensitive to not only LV contractility, but also to the LV loading conditions, especially to a change in afterload. This result suggests that caution must be exercised when associating changes in myocardial strain with changes in LV contractility. The methodically validated multiscale model will be used in future studies to understand human heart diseases.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Myocardial strain imaging: how useful is it in clinical decision making?

          Myocardial strain is a principle for quantification of left ventricular (LV) function which is now feasible with speckle-tracking echocardiography. The best evaluated strain parameter is global longitudinal strain (GLS) which is more sensitive than left ventricular ejection fraction (LVEF) as a measure of systolic function, and may be used to identify sub-clinical LV dysfunction in cardiomyopathies. Furthermore, GLS is recommended as routine measurement in patients undergoing chemotherapy to detect reduction in LV function prior to fall in LVEF. Intersegmental variability in timing of peak myocardial strain has been proposed as predictor of risk of ventricular arrhythmias. Strain imaging may be applied to guide placement of the LV pacing lead in patients receiving cardiac resynchronization therapy. Strain may also be used to diagnose myocardial ischaemia, but the technology is not sufficiently standardized to be recommended as a general tool for this purpose. Peak systolic left atrial strain is a promising supplementary index of LV filling pressure. The strain imaging methodology is still undergoing development, and further clinical trials are needed to determine if clinical decisions based on strain imaging result in better outcome. With this important limitation in mind, strain may be applied clinically as a supplementary diagnostic method.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effective arterial elastance as index of arterial vascular load in humans.

            This study tested whether the simple ratio of ventricular end-systolic pressure to stroke volume, known as the effective arterial elastance (Ea), provides a valid measure of arterial load in humans with normal and aged hypertensive vasculatures. Ventricular pressure-volume and invasive aortic pressure and flow were simultaneously determined in 10 subjects (four young normotensive and six older hypertensive). Measurements were obtained at rest, during mechanically reduced preload, and after pharmacological interventions. Two measures of arterial load were compared: One was derived from aortic input impedance and arterial compliance data using an algebraic expression based on a three-element Windkessel model of the arterial system [Ea(Z)], and the other was more simply measured as the ratio of ventricular end-systolic pressure to stroke volume [Ea(PV)]. Although derived from completely different data sources and despite the simplifying assumptions of Ea(PV), both Ea(Z) and Ea(PV) were virtually identical over a broad range of altered conditions: Ea(PV) = 0.97.Ea(Z) + 0.17; n = 33, r2 = 0.98, SEE = 0.09, p less than 0.0001. Whereas Ea(PV) also correlated with mean arterial resistance, it exceeded resistance by as much as 25% in older hypertensive subjects (because of reduced compliance and wave reflections), which better indexed the arterial load effects on the ventricle. Simple methods to estimate Ea (PV) from routine arterial pressures were tested and validated. Ea(PV) provides a convenient, useful method to assess arterial load and its impact on the human ventricle. These results highlight effects of increased pulsatile load caused by aging or hypertension on the pressure-volume loop and indicate that this load and its effects on cardiac performance are often underestimated by mean arterial resistance but are better accounted for by Ea.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Echocardiographic assessment of myocardial strain.

              Echocardiographic strain imaging, also known as deformation imaging, has been developed as a means to objectively quantify regional myocardial function. First introduced as post-processing of tissue Doppler imaging velocity converted to strain and strain rate, strain imaging has more recently also been derived from digital speckle tracking analysis. Strain imaging has been used to gain greater understanding into the pathophysiology of cardiac ischemia and infarction, primary diseases of the myocardium, and the effects of valvular disease on myocardial function, and to advance our understanding of diastolic function. Strain imaging has also been used to quantify abnormalities in the timing of mechanical activation for heart failure patients undergoing cardiac resynchronization pacing therapy. Further advances, such as 3-dimensional speckle tracking strain imaging, have emerged to provide even greater insight. Strain imaging has become established as a robust research tool and has great potential to play many roles in routine clinical practice to advance the care of the cardiovascular patient. This perspective reviews the physiology of myocardial strain, the technical features of strain imaging using tissue Doppler imaging and speckle tracking, their strengths and weaknesses, and the state-of-the-art present and potential future clinical applications. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                lclee@egr.msu.edu
                Journal
                Physiol Rep
                Physiol Rep
                10.1002/(ISSN)2051-817X
                PHY2
                physreports
                Physiological Reports
                John Wiley and Sons Inc. (Hoboken )
                2051-817X
                09 November 2017
                November 2017
                : 5
                : 21 ( doiID: 10.1002/phy2.2017.5.issue-21 )
                : e13392
                Affiliations
                [ 1 ] Department of Mechanical Engineering Michigan State University East Lansing Michigan
                [ 2 ] Simula Research Laboratory Oslo Norway
                [ 3 ] Cardiovascular Research Foundation and Department of Medicine Columbia University New York New York
                Author notes
                [*] [* ] Correspondence

                Lik Chuan Lee, Department of Mechanical Engineering, Michigan State University, 428 S. Shaw Lane, Room: 2445, East Lansing, MI 48824.

                Tel: 517‐432‐4563

                Fax: 517‐355‐2288

                E‐mail: lclee@ 123456egr.msu.edu

                Article
                PHY213392
                10.14814/phy2.13392
                5688770
                29122952
                8821d73c-3767-4986-8808-328a66d8ed97
                © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 July 2017
                : 23 July 2017
                Page count
                Figures: 8, Tables: 3, Pages: 14, Words: 7711
                Funding
                Funded by: American Heart Association (AHA)
                Award ID: 17SDG33370110
                Categories
                Cellular Physiology
                Cardiovascular Conditions, Disorders and Treatments
                Heart
                Original Research
                Original Research
                Custom metadata
                2.0
                phy213392
                November 2017
                Converter:WILEY_ML3GV2_TO_NLMPMC version:5.2.5 mode:remove_FC converted:15.11.2017

                cardiac energetics,finite element modeling,left ventricle,myocardial strain

                Comments

                Comment on this article