84
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity

      discussion

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cellular senescence is a fundamental aging mechanism that has been implicated in many age-related diseases and is a significant cause of tissue dysfunction. Accumulation of senescent cells occurs during aging and is also seen in the context of obesity and diabetes. Senescent cells may play a role in type 2 diabetes pathogenesis through direct impact on pancreatic β-cell function, senescence-associated secretory phenotype (SASP)-mediated tissue damage, and involvement in adipose tissue dysfunction. In turn, metabolic and signaling changes seen in diabetes, such as high circulating glucose, altered lipid metabolism, and growth hormone axis perturbations, can promote senescent cell formation. Thus, senescent cells might be part of a pathogenic loop in diabetes, as both a cause and consequence of metabolic changes and tissue damage. Therapeutic targeting of a basic aging mechanism such as cellular senescence may have a large impact on disease pathogenesis and could be more effective in preventing the progression of diabetes complications than currently available therapies that have limited impact on already existing tissue damage. Therefore, senescent cells and the SASP represent significant opportunities for advancement in the prevention and treatment of type 2 diabetes and its complications.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs

          The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1 −/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1 −/Δ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas.

            Although cancer arises from a combination of mutations in oncogenes and tumour suppressor genes, the extent to which tumour suppressor gene loss is required for maintaining established tumours is poorly understood. p53 is an important tumour suppressor that acts to restrict proliferation in response to DNA damage or deregulation of mitogenic oncogenes, by leading to the induction of various cell cycle checkpoints, apoptosis or cellular senescence. Consequently, p53 mutations increase cell proliferation and survival, and in some settings promote genomic instability and resistance to certain chemotherapies. To determine the consequences of reactivating the p53 pathway in tumours, we used RNA interference (RNAi) to conditionally regulate endogenous p53 expression in a mosaic mouse model of liver carcinoma. We show that even brief reactivation of endogenous p53 in p53-deficient tumours can produce complete tumour regressions. The primary response to p53 was not apoptosis, but instead involved the induction of a cellular senescence program that was associated with differentiation and the upregulation of inflammatory cytokines. This program, although producing only cell cycle arrest in vitro, also triggered an innate immune response that targeted the tumour cells in vivo, thereby contributing to tumour clearance. Our study indicates that p53 loss can be required for the maintenance of aggressive carcinomas, and illustrates how the cellular senescence program can act together with the innate immune system to potently limit tumour growth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The prevalence of comorbid depression in adults with diabetes: a meta-analysis.

              To estimate the odds and prevalence of clinically relevant depression in adults with type 1 or type 2 diabetes. Depression is associated with hyperglycemia and an increased risk for diabetic complications; relief of depression is associated with improved glycemic control. A more accurate estimate of depression prevalence than what is currently available is needed to gauge the potential impact of depression management in diabetes. MEDLINE and PsycINFO databases and published references were used to identify studies that reported the prevalence of depression in diabetes. Prevalence was calculated as an aggregate mean weighted by the combined number of subjects in the included studies. We used chi(2) statistics and odds ratios (ORs) to assess the rate and likelihood of depression as a function of type of diabetes, sex, subject source, depression assessment method, and study design. A total of 42 eligible studies were identified; 20 (48%) included a nondiabetic comparison group. In the controlled studies, the odds of depression in the diabetic group were twice that of the nondiabetic comparison group (OR = 2.0, 95% CI 1.8-2.2) and did not differ by sex, type of diabetes, subject source, or assessment method. The prevalence of comorbid depression was significantly higher in diabetic women (28%) than in diabetic men (18%), in uncontrolled (30%) than in controlled studies (21%), in clinical (32%) than in community (20%) samples, and when assessed by self-report questionnaires (31%) than by standardized diagnostic interviews (11%). The presence of diabetes doubles the odds of comorbid depression. Prevalence estimates are affected by several clinical and methodological variables that do not affect the stability of the ORs.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                July 2015
                17 June 2015
                : 64
                : 7
                : 2289-2298
                Affiliations
                [1] 1Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN
                [2] 2Mayo Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Rochester, MN
                [3] 3Department of Anesthesiology, Mayo Clinic, Rochester, MN
                Author notes
                Corresponding author: James L. Kirkland, kirkland.james@ 123456mayo.edu .
                Article
                1820
                10.2337/db14-1820
                4477358
                26106186
                883638d9-9ad5-4ceb-b829-6aaca0dea0a5
                © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
                History
                : 26 November 2014
                : 08 February 2015
                Page count
                Pages: 10
                Funding
                Funded by: Noaber Foundation
                Funded by: Glenn Foundation for Medical Research http://dx.doi.org/10.13039/100001642
                Funded by: National Institute on Aging http://dx.doi.org/10.13039/100000049
                Award ID: AG044396
                Award ID: AG046061
                Categories
                Perspectives in Diabetes

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article