38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Systematic discovery of antiphage defense systems in the microbial pangenome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The arms race between bacteria and phages led to the development of sophisticated antiphage defense systems, including CRISPR-Cas and restriction-modification systems. Evidence suggests that unknown defense systems are located in "defense islands" in microbial genomes. We comprehensively characterized the bacterial defensive arsenal by examining gene families that are clustered next to known defense genes in prokaryotic genomes. Candidate defense systems were systematically engineered and validated in model bacteria for their antiphage activities. We report nine previously unknown antiphage systems and one antiplasmid system that are widespread in microbes and strongly protect against foreign invaders. These include systems that adopted components of the bacterial flagella and condensin complexes. Our data also suggest a common, ancient ancestry of innate immunity components shared between animals, plants, and bacteria.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes

          Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The SARM1 Toll/Interleukin-1 Receptor Domain Possesses Intrinsic NAD(+) Cleavage Activity that Promotes Pathological Axonal Degeneration.

            Axonal degeneration is an early and prominent feature of many neurological disorders. SARM1 is the central executioner of the axonal degeneration pathway that culminates in depletion of axonal NAD(+), yet the identity of the underlying NAD(+)-depleting enzyme(s) is unknown. Here, in a series of experiments using purified proteins from mammalian cells, bacteria, and a cell-free protein translation system, we show that the SARM1-TIR domain itself has intrinsic NADase activity-cleaving NAD(+) into ADP-ribose (ADPR), cyclic ADPR, and nicotinamide, with nicotinamide serving as a feedback inhibitor of the enzyme. Using traumatic and vincristine-induced injury models in neurons, we demonstrate that the NADase activity of full-length SARM1 is required in axons to promote axonal NAD(+) depletion and axonal degeneration after injury. Hence, the SARM1 enzyme represents a novel therapeutic target for axonopathies. Moreover, the widely utilized TIR domain is a protein motif that can possess enzymatic activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The phage-host arms race: shaping the evolution of microbes.

              Bacteria, the most abundant organisms on the planet, are outnumbered by a factor of 10 to 1 by phages that infect them. Faced with the rapid evolution and turnover of phage particles, bacteria have evolved various mechanisms to evade phage infection and killing, leading to an evolutionary arms race. The extensive co-evolution of both phage and host has resulted in considerable diversity on the part of both bacterial and phage defensive and offensive strategies. Here, we discuss the unique and common features of phage resistance mechanisms and their role in global biodiversity. The commonalities between defense mechanisms suggest avenues for the discovery of novel forms of these mechanisms based on their evolutionary traits.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                January 2018
                :
                :
                : eaar4120
                Article
                10.1126/science.aar4120
                6387622
                29371424
                884ae84f-e1c4-461e-9b72-8e3ffca9b0c2
                History

                Comments

                Comment on this article