24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome size variation and karyotype diversity in eight taxa of Sorbus sensu stricto (Rosaceae) from China

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Eight taxa of Sorbus Linnaeus, 1753 sensu stricto ( Rosaceae ) from China have been studied karyologically through chromosome counting, chromosomal measurement and karyotype symmetry. Genome size was also estimated by flow cytometry. Six taxa, S. amabilis Cheng ex T.T.Yu et K.C.Kuan, 1963, S. hupehensis var. paucijuga (D.K. Zang et P.C. Huang, 1992) L.T. Lu, 2000, S. koehneana C.K. Schneider, 1906, S. pohuashanensis (Hance, 1875) Hedlund, 1901, S. scalaris Koehne, 1913 and S. wilsoniana C.K. Schneider, 1906 are diploids with 2n = 34, whereas two taxa, S. filipes Handel-Mazzetti,1933 and S. ovalis McAllister, 2005 are tetraploid with 2n = 68. In general, the chromosome size is mainly small, and karyotypes are symmetrical with predominance of metacentric chromosomes. Genome size variation of diploids and tetraploids is 1.401 pg –1.676 pg and 2.674 pg –2.684 pg, respectively. Chromosome numbers of S. amabilis and S. hupehensis var. paucijuga , and karyotype and genome size of eight taxa studied are reported for the first time. This study emphasised the reliability of flow cytometry in genome size determination to infer ploidy levels in Chinese native Sorbus species.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Estimation of nuclear DNA content in plants using flow cytometry.

          Flow cytometry (FCM) using DNA-selective fluorochromes is now the prevailing method for the measurement of nuclear DNA content in plants. Ease of sample preparation and high sample throughput make it generally better suited than other methods such as Feulgen densitometry to estimate genome size, level of generative polyploidy, nuclear replication state and endopolyploidy (polysomaty). Here we present four protocols for sample preparation (suspensions of intact cell nuclei) and describe the analysis of nuclear DNA amounts using FCM. We consider the chemicals and equipment necessary, the measurement process, data analysis, and describe the most frequent problems encountered with plant material such as the interference of secondary metabolites. The purpose and requirement of internal and external standardization are discussed. The importance of using a correct terminology for DNA amounts and genome size is underlined, and its basic principles are explained.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origin, evolution and proposed stabilization of the terms 'genome size' and 'C-value' to describe nuclear DNA contents.

            Perusing the literature on nuclear 'genome size' shows that the term is not stabilized, but applied with different meanings. It is used for the DNA content of the complete chromosome complement (with chromosome number n), for which others use 'C-value', but also for the DNA content of the monoploid chromosome set only (with chromosome number x). Reconsideration of the terminology is required. Our purpose is to discuss the currently unstable usage of the terms 'genome size' and 'C-value', and to propose a new unified terminology which can describe nuclear DNA contents with ease and without ambiguity. We argue that there is a need to maintain the term genome size in a broad sense as a covering term, because it is widely understood, short and phonetically pleasing. Proposals are made for a unified and consensual terminology. In this, 'genome size' should mean the DNA content based on chromosome number x and n, and should be used mainly in a general sense. The necessary distinction of the kinds of genome sizes is made by the adjectives 'monoploid' and the neology 'holoploid'. 'Holoploid genome size' is a shortcut for the DNA content of the whole chromosome complement characteristic for the individual (and by generalization for the population, species, etc.) irrespective of the degree of generative polyploidy, aneuploidies, etc. This term was lacking in the terminology and is for reasons of linguistic consistency indispensable. The abbreviated terms for monoploid and holoploid genome size are, respectively, Cx-value and C-value. Quantitative data on genome size should always indicate the C-level by a numerical prefix, such as 1C, 1Cx, 2C, etc. The proposed conventions cover general fundamental aspects relating to genome size in plants and animals, but do not treat in detail cytogenetic particularities (e.g. haploids, hybrids, etc.) which will need minor extensions of the present scheme in a future paper.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              NOMENCLATURE FOR CENTROMERIC POSITION ON CHROMOSOMES

                Bookmark

                Author and article information

                Contributors
                Journal
                Comp Cytogenet
                Comp Cytogenet
                8
                urn:lsid:arphahub.com:pub:A71ED5FC-60ED-5DA3-AC8E-F6D2BB5B3573
                urn:lsid:zoobank.org:pub:C8FA3ADA-5585-4F26-9215-A520EE683979
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2021
                20 May 2021
                : 15
                : 2
                : 137-148
                Affiliations
                [1 ] Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China Nanjing Forestry University Nanjing China
                Author notes
                Corresponding author: Xin Chen ( chenxinzhou@ 123456hotmail.com )

                Academic editor: Marina Iovene

                Author information
                https://orcid.org/0000-0003-2315-083X
                Article
                58278
                10.3897/CompCytogen.v15i2.58278
                8159915
                34055237
                88577a49-cf49-4e24-b20e-076a41571479
                Jiabao Li, Kailin Zhu, Qin Wang, Xin Chen

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 03 September 2020
                : 28 April 2021
                Funding
                the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Province, China (PAPD)
                Categories
                Research Article
                Rosaceae
                Genetics
                Karyosystematics
                Cenozoic
                Asia

                dna content,flow cytometry,polyploid,sorbus evolution
                dna content, flow cytometry, polyploid, sorbus evolution

                Comments

                Comment on this article